
MATLAB® Production Server™

User’s Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Production Server™

© COPYRIGHT 2012 by MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2012 Online only New for Version 1.0 (Release R2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introducing MATLAB Production Server

1
Product Description . 1-2
Key Features . 1-2

Product Overview . 1-3
How Does This Product Work? . 1-3
Who Uses this Product? . 1-3

Getting Started With MATLAB Production
Server

2
Deploy MATLAB Code with MATLAB Production
Server . 2-2
Introduction to the Workflow . 2-2
Create a Deployable CTF Archive . 2-3
Start a Server Instance . 2-7
Share the CTF Archive on the Server Instance 2-10
Create a Java Application That Calls the Deployed
Function . 2-10

Create a .NET Application That Calls the Deployed
Function . 2-14

MATLAB Code Deployment

3
Write MATLAB Code for Deployment 3-2
Deployment Coding Guidelines . 3-2
State-Dependent Functions . 3-2

iii

Deploying MATLAB Functions Containing MEX Files . . . 3-4
Unsupported MATLAB Data Types for Client and Server
Marshaling . 3-5

Create a Deployable CTF Archive from MATLAB
Code . 3-6
Prerequisites for Deployable Archive Creation 3-6
Build a Deployable CTF Archive . 3-6

Share the Deployable CTF Archive 3-11
For More Information . 3-11

Server Management

4
Server Overview . 4-2
What is a Server? . 4-2
How Does a Server Manage its Work? 4-2

Product Installation and Licensing 4-5
Install MATLAB Production Server 4-5
License Management for MATLAB Production Server . . . 4-8

Server Creation . 4-10
Prerequisites . 4-10
Procedure . 4-10
Create a Server . 4-11
For More Information . 4-12

MATLAB Compiler Runtime (MCR) Installation 4-13
Install the MATLAB Compiler Runtime (MCR) 4-13

Configuration File Customization 4-14
Prerequisites . 4-14
Procedure . 4-14
Specify the Installed MCR to Your Server Instance 4-15
For More Information . 4-17

iv Contents

Server Startup . 4-18
Prerequisites . 4-18
Procedure . 4-18
Start a Server . 4-19
For More Information . 4-19

Server Status Verification . 4-21
Prerequisite . 4-21
Procedure . 4-21
Verify Status of a Server . 4-21
For More Information . 4-23

Server Troubleshooting . 4-24
Procedure . 4-24
Diagnose a Server Problem . 4-24
Server Diagnostic Tools . 4-25
Common Error Messages and Resolutions 4-28
For More Information . 4-29

Client Programming

5
MATLAB Production Server Client Overview 5-2
What is a MATLAB Production Server Client? 5-2
Create a MATLAB Production Server Client 5-2
Unsupported MATLAB Data Types for Client and Server
Marshaling . 5-3

Java Client . 5-4
Java Client Coding Best Practices . 5-4
Bond Pricing Tool with GUI for Java Client 5-9
Monte Carlo Simulation for Java Client 5-15
Code Multiple Outputs for Java Client 5-24
Code Variable-Length Inputs and Outputs for Java
Client . 5-27

Marshal MATLAB Structures (Structs) in Java 5-29
Data Conversion with Java and MATLAB Types 5-36

.NET Client . 5-43

v

.NET Client Coding Best Practices 5-43
Preparing Your Microsoft Visual Studio Environment 5-47
Monte Carlo Simulation for .NET Client 5-48
Code Multiple Outputs for C# .NET Client 5-57
Code Variable-Length Inputs and Outputs for .NET
Client . 5-61

Marshal MATLAB Structures (structs) in C# 5-65
Data Conversion with C# and MATLAB Types 5-74

Commands — Alphabetical List

6

Data Conversion Rules

A
Conversion of Java Types to MATLAB Types A-2

Conversion of MATLAB Types to Java Types A-4

Conversion Between MATLAB Types and C# Types . . . A-6

MATLAB Production Server .NET Client API
Classes and Methods

B
MATLABException . B-2
About MATLABException . B-2
Members . B-2
Requirements . B-4
See Also . B-4

MATLABStackFrame . B-5

vi Contents

About MATLABStackFrame . B-5
Members . B-5
Requirements . B-7
See Also . B-7

MWClient . B-8
About MWClient . B-8
Members . B-8
Requirements . B-9
See Also . B-9

MWHttpClient . B-10
About MWHttpClient . B-10
Members . B-11
Requirements . B-12
See Also . B-12

MWStructureListAttribute . B-13
About MWStructureListAttribute . B-13
Members . B-13
Requirements . B-13

Index

vii

viii Contents

1

Introducing MATLAB
Production Server

• “Product Description” on page 1-2

• “Product Overview” on page 1-3

1 Introducing MATLAB® Production Server™

Product Description
Run MATLAB® programs as a part of web, database, and enterprise
applications

MATLAB Production Server™ lets you run MATLAB programs within
your production systems, enabling you to incorporate numerical analytics
in enterprise applications. Web, database, and enterprise applications
connect to MATLAB programs running on MATLAB Production Server via
a lightweight client library, isolating the MATLAB programs from your
production system. You use MATLAB Compiler™ to package programs
and deploy them directly to MATLAB Production Server without recoding
or creating custom infrastructure to manage them. MATLAB Production
Server runs on multiprocessor and multicore servers, providing low-latency
processing of many concurrent requests. You can deploy the product on
additional computer servers to increase the number of concurrent requests
the system can handle and to provide redundancy.

Key Features

• Production deployment of MATLAB programs without recoding or creating
custom infrastructure

• Scalable performance and management of packaged MATLAB programs

• Lightweight client library for calling numerical processing programs from
enterprise applications

• Common infrastructure across .NET and Java™ development environments

• Isolation of MATLAB processes from other system elements

1-2

Product Overview

Product Overview

In this section...

“How Does This Product Work?” on page 1-3

“Who Uses this Product?” on page 1-3

How Does This Product Work?
MATLAB Production Server run your MATLAB applications in a production
environment by hosting the MATLAB Compiler Runtime (MCR), a standalone
set of shared libraries that enables the execution of compiled MATLAB
applications or components on computers that do not have MATLAB installed.

MATLAB Production Server works in conjunction with MATLAB Compiler to
build CTF archives of MATLAB functions and deploying them in a scalable
production server environment. It does this by:

• Building MATLAB function libraries, creating a deployable CTF archive
using the Deployment Tool. The archive is generic because it can be
accessed by various third-party clients in the environment you select.
Currently, Java and Microsoft® .NET Framework are supported.

• Executing MATLAB functions, on demand, from instances of the MATLAB
Compiler Runtime (MCR), managed on the server.

Who Uses this Product?
Tasks performed by users of MATLAB Production Server can be subdivided
into three functional areas, or roles.

Depending on your installation, one user may perform one, two, or all three
roles. Different roles assume different skill sets and expertise. See the
following table for detailed descriptions of tasks performed by each type of
user.

1-3

1 Introducing MATLAB® Production Server™

How Different Roles Work with MATLAB Production Server

This Type of User.... Uses MATLAB Production Server
To....

MATLAB programmer

Deploys MATLAB functions to
enterprise and Web production
environments. Using the
Deployment Tool in MATLAB,
the MATLAB programmer creates
a CTF archive from MATLAB
code. This archive is hosted by
server instances in the MATLAB
Production Server product.

Server administrator

Manages CTF archives in the
auto-deploy repositories on the
server, in a production environment.
Using commands and diagnostic
tools, the administrator maintains
the server environment in order
to host deployed archives and the
MATLAB Compiler Runtime (MCR)
for clients.

Application developer

Develops client interfaces in Java
or C# (using Microsoft .NET
Framework). The client interface is
modeled on the MATLAB function
that is hosted. The application
developer integrates the client
interface into larger enterprise and
Web applications, as needed. Once
an archive is hosted by MATLAB
Production Server, any changes
made to the compiled MATLAB code
are immediately available on the
server, and so through the client
interface.

1-4

Product Overview

User Roles and Tasks

MATLAB Programmer

Role Knowledge Base Tasks Can Include:

MATLAB programmer

• MATLAB expert

• No IT experience needed

• No access to IT systems

• Installs MATLAB Compiler

• Writes and tests MATLAB
code

• Designs application, with
Java or .NET developer

• Creates a deployable
CTF archive using the
Deployment Tool

• Hands off the CTF archive to
the Java or .NET developer

1-5

1 Introducing MATLAB® Production Server™

Java or .NET Developer

Role Knowledge Base Tasks Can Include:

Java developer

.NET developer

• No MATLAB experience
needed

• Moderate IT Experience
preferable

• Proficient in client coding

• Minimal access to IT
systems

• Installs client SDK or IDE

• Creates client interface

• Designs application, with
MATLAB programmer

• Writes application code

• Installs and tests
application

• Installs and tests
application with MATLAB
Production Server Software

1-6

Product Overview

Server Administrator

Role Knowledge Base Tasks Can Include:

Server administrator

• No MATLAB experience
needed

• Access to IT Systems

• IT expert

• Installs the MATLAB
Production Server and
MATLAB Compiler
Runtime (MCR)

• Starts and shuts down
MATLAB Production Server

• Verifies MATLAB
Production Server is
running properly

• Maintains the server,
troubleshooting problems
by examining log data.

1-7

1 Introducing MATLAB® Production Server™

1-8

2

Getting Started With
MATLAB Production Server

2 Getting Started With MATLAB® Production Server™

Deploy MATLAB Code with MATLAB Production Server

In this section...

“Introduction to the Workflow” on page 2-2

“Create a Deployable CTF Archive” on page 2-3

“Start a Server Instance” on page 2-7

“Share the CTF Archive on the Server Instance” on page 2-10

“Create a Java Application That Calls the Deployed Function” on page 2-10

“Create a .NET Application That Calls the Deployed Function” on page 2-14

Introduction to the Workflow
This tutorial shows how to deploy MATLAB code using the MATLAB
Production Server. The tutorial is made up of three smaller examples that
illustrate the three parts of the process:

• Creating a deployable archive using MATLAB Compiler.

• Creating, configuring, and starting an instance of the MATLAB Production
Server.

• Writing a Java or C# application, called a client in this documentation, that
uses the deployed MATLAB code via the server.

To illustrate the workflow, this tutorial walks through all these required
tasks. In a production environment, each task might be performed by
separate individuals. For example, a MATLAB programmer might create the
MATLAB function and deploy it, a system administrator might install and
manage the server instance, and Java or C# programmers might create the
client applications.

The following figure illustrates this workflow using the tutorial example,
mymagic.m. In the figure, note how multiple client applications can call the
same deployed function through a single server instance.

2-2

Deploy MATLAB® Code with MATLAB® Production Server™

������

���	
��� ���	
��������������
������

�	�	������
������	����

���	
����

�	�	������
������	����

���	
����

�	�	������
������	����

���	
����

������
��������
� �����

������
!��� �����
"�����

#	 ���������
���	
��������������

Create a Deployable CTF Archive
This example shows how to deploy a MATLAB function so that it can be used
with the MATLAB Production Server. This task is typically performed by a
MATLAB programmer. This part of the tutorial assumes you have MATLAB
and the MATLAB Compiler installed on your system.

Write the MATLAB code you want to deploy

2-3

2 Getting Started With MATLAB® Production Server™

For this tutorial, the MATLAB function to be deployed returns a magic square
of the size you specify. (A magic square is a matrix of integers arranged so
that their sum is the same when added vertically, horizontally, or diagonally.)
To work along with this tutorial, copy the following code into a file named
mymagic.m, using the MATLAB editor, and save it in a folder of your choice.

function m = mymagic(in)
m = magic(in);

Add the folder to the MATLAB path, so MATLAB can find it. To add a
folder to the MATLAB path, double-click it in the Current Folder browser
in MATLAB.

When you call mymagic, specifying a size, the function returns a magic square
of that dimension.

mymagic(4)

ans =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Deploy the function

At the MATLAB command prompt, type deploytool to launch the
Deployment tool. In the Deployment Project dialog box, fill-in the required
information, detailed in the following table, and click OK. The Compiler
creates the deployment project file in the folder you specified.

2-4

Deploy MATLAB® Code with MATLAB® Production Server™

Field Value

Name Specify the name you want to give your
project. The example names the project
mymagic_deployed

Location Specify the folder where you want to store the
project. The example uses the folder H:\Work.

Type Specify the type of deployed application you
want to create. To deploy using MATLAB
Production Server, you must select Generic
CTF

The following figure illustrates the settings for the example.

"�����
$������
��%

After creating your deployment project, you must add files to the project. On
the Build tab, click Add files. In the Add Files dialog box, select the file or
files you want to deploy and click Open. For this example, select mymagic.m.

After adding files, you can build the generic CTF archive. Click the Build

button (). The Deployment tool displays a status dialog box during the
build process. When the build finishes, click Close to dismiss the dialog box.

2-5

2 Getting Started With MATLAB® Production Server™

����&����'�

The Deployment tool creates the CTF file in the distrib folder of your
deployment project. To view details about your deployment project, click the

Action icon () on the toolbar, and then click Settings.

2-6

Deploy MATLAB® Code with MATLAB® Production Server™

(�� �
����

For information about how to share your CTF archive using the MATLAB
Production Server, see “Share the CTF Archive on the Server Instance” on
page 2-10

Start a Server Instance
This example shows how to install, configure, and start an instance of
MATLAB Production Server. This is called a server instance because you
can have multiple servers running at the same time. This task is typically
performed by a system administrator.

Install MATLAB Production Server

2-7

2 Getting Started With MATLAB® Production Server™

Run the installer and specify the folder into which you want to install
MATLAB Production Server. During installation, on the Installation Type
dialog box, choose to perform a custom installation because you must select
the license manager for installation in the product list. This example uses the
default installation folder, C:\Program Files\MATLAB\MATLAB Production
Server. For more information about the installation process, see “Product
Installation and Licensing” on page 4-5.

Note To run server commands from any folder on your computer, add the
MPS_root\script folder to your system PATH environment variable, where
MPS_root represents your MATLAB Production Server installation folder.

Install MATLAB Compiler Runtime (MCR)

If it is not already installed on your system, you must install the MCR.
MATLAB Production Server requires the MCR. For information about
obtaining the MCR, visit the MATLAB Compiler Runtime page.

Create a Server Instance

To create the server instance, move to the folder where you want to create
your server and use the mps-new command. You specify the name of your
server as an argument.

For this example, navigate to the C:\tmp folder and enter the following
command. By specifying the -v option, the example displays the results of the
command as each folder in the hierarchy is built.

C:\tmp>mps-new prod_server_1 -v

prod_server_1/.mps_version...ok
prod_server_1/config/main_config...ok
prod_server_1/auto_deploy/...ok
prod_server_1/log/...ok
prod_server_1/pid/...ok
prod_server_1/old_logs/...ok
prod_server_1/.mps_socket/...ok
prod_server_1/endpoint/...ok

2-8

http://www.mathworks.com/products/compiler/mcr/

Deploy MATLAB® Code with MATLAB® Production Server™

For more information on these folders, see “What is a Server?” on page 4-2

Configure the Server

After you create a new server instance, you must configure it. The MATLAB
Production Server configuration file, main_config, includes many parameters
you can use to tune server performance. For more information about
configuration options, see “Configuration File Customization” on page 4-14.
At a minimum, you must use the file to specify the location of the MCR you
want to use with the server.

To configure a server, open your server’s configuration file, main_config, using
a text editor of your choice. This file resides in MPS_server_root\config,
where MPS_server_root represents the path to your server. For this example,
the file is in C:\tmp\prod_server_1\config.

To specify the location of your MCR, set the value of the --mcr-root option in
the file to the full path of your MCR. You must include the version number of
the MCR (vnnn) in the path.

For this example, set the value as follow:

--mcr-root C:\Program Files\MATLAB\MATLAB Compiler Runtime\v80

You can also use the mps-setup command to specify the MCR location in
main_config.

Save your changes to themain_config file and exit your text editor.

Start the Server

To start the server, use the mps-start command. You can either move into
the server folder to execute the command, or use the -C option to specify the
path to the server on the command line.

For example, to start prod_server_1, enter this command:

mps-start -C C:\tmp\prod_server_1

To ensure the server has started, use the mps-status command.

2-9

2 Getting Started With MATLAB® Production Server™

mps-status -C C:\tmp\prod_server_1

'C:\tmp\prod_server_1' STARTED
license checked out

Share the CTF Archive on the Server Instance
To make your CTF archive available using MATLAB Production Server, you
must copy the CTF file into the auto_deploy folder in your server instance.
You can add a CTF into the auto_deploy folder of a running server—the
server monitors this folder dynamically and processes the CTF files that are
added to the auto_deploy folder.

For this example, copy the CTF file from the deployment project
H:\Work\mymagic_deployed\distrib\ folder into the server’s auto_deploy
folder, C:\tmp\prod_server_1\auto_deploy.

Create a Java Application That Calls the Deployed
Function
This example shows how you can call a deployed MATLAB function from a
Java application using MATLAB Production Server In your Java code, you
must:

• Define a Java interface that represents the MATLAB function.

• Instantiate an object of the client class MWHttpClient and setup
communication with the server through a proxy.

• Call the deployed function in your Java code.

This task is typically performed by Java application programmer. This part of
the tutorial assumes you have the Java SDK installed on your computer.

Design a Java interface

Design a Java interface that represents the deployed MATLAB function. An
interface declares the existence of a particular function that is implemented
elsewhere.

For example, the interface for the mymagic function:

2-10

Deploy MATLAB® Code with MATLAB® Production Server™

function m = mymagic(in)
m = magic(in);

might look like this:

interface MATLABMagic {
double[][] mymagic(int size)

throws MATLABException, IOException;
}

When creating the interface, note the following:

• You can give the interface any valid Java name. The name doesn’t have to
be same as the name of CTF. This example specifies the name MATLABMagic

• You must give the method defined by this interface the same name as the
deployed MATLAB function. For this example, that’s mymagic.

• The Java method must support the same inputs and outputs supported by
the MATLAB function, in both type and number. In MATLAB, you do not
need to specify the data types of inputs and outputs. The MATLAB mymagic
function accepts inputs of any numeric type and returns a matrix of type
double. In Java, you must declare the data types of inputs and outputs.
The Java mymagic method declares the input of type int and the output
of type double, which are types supported by the MATLAB function. For
more information about data type conversions and handling more complex
MATLAB function signatures, see “Java Client” on page 5-4.

• The Java method mymagic must handle MATLAB exceptions and I/O
exceptions, for any transport error during client-server communication.

Instantiate the Client Class and Create the Proxy Object

Instantiate a client object using the MWHttpClient constructor. This class
establishes an HTTP connection between the application and the server
instance.

MWClient client = new MWHttpClient();

After creating the object, call the object’s createProxy method to create a
dynamic proxy. You must specify the URL of the CTF file and the name of
your interface class file as arguments:

2-11

2 Getting Started With MATLAB® Production Server™

MATLABMagic m = client.createProxy(new URL("http://localhost:9910/mymagic_deployed"),

MATLABMagic.class);

For more information about the createProxy method, see the Javadoc
included in the MPS_root\client\java\doc folder, where MPS_root is the
name of your MATLAB Production Server installation folder.

Call the Deployed function in Java code

You call the deployed function in your Java application by calling the public
method of the interface. In this example, the Java application calls mymagic,
specifying the size of the magic square as an argument.

double[][] result = m.mymagic(siz);

Best practice is to free system resources after you are done calling the
deployed function by calling the close method of the client object.

client.close();

The following presents the full Java application to create a magic square,
using MATLAB Production Server.

Java Class MPSClientExample

import java.net.URL;

import java.io.IOException;

import com.mathworks.mps.client.MWClient;

import com.mathworks.mps.client.MWHttpClient;

import com.mathworks.mps.client.MATLABException;

interface MATLABMagic {

double[][] mymagic(int size) throws IOException, MATLABException;

}

public class MPSClientExample {

public static void main(String[] args){

if(args.length != 1){

System.out.println("Usage: MPSClientExample size");

2-12

Deploy MATLAB® Code with MATLAB® Production Server™

System.exit(0);

}

int siz;

siz = Integer.parseInt(args[0]);

// Create a MWHttpClient instance

MWClient client = new MWHttpClient();

try{

// Create the proxy object that represents magic.ctf

MATLABMagic m = client.createProxy(new URL("http://localhost:9910/mymagic_deployed")

MATLABMagic.class);

// The proxy object has mymagic as one of its public methods.

// Invocation of mymagic

// results in a server request that sends magic square in response

double[][] result = m.mymagic(siz);

// Print the magic square

printResult(result);

}catch(MATLABException ex){

// This exception represents errors in MATLAB

System.out.println(ex);

}catch(IOException ex){

// This exception represents network issues.

System.out.println(ex);

}finally{

// Close the client

client.close();

}

}

private static void printResult(double[][] result){

for(double[] row : result){

for(double element : row){

System.out.print(element + " ");

}

2-13

2 Getting Started With MATLAB® Production Server™

System.out.println();

}

}

}

Compile the Java application

Compile the Java application, using the javac command or use the build
capability of your Java IDE.

For example, enter the following (on one line):

H:\Work>javac -classpath "C:\Program Files\MATLAB\MATLAB Production Server\R2012b

\client\java\mps_client.jar" MPSClientExample.java

Run the Java application

After successfully compiling your Java application, run it using the java
command or your IDE. For example, enter the following (on one line):

H:\Work>java -classpath .;"C:\Program Files\MATLAB\MATLAB Production Server\R2012b

\client\java\mps_client.jar" MPSClientExample 4

The application returns the magic square at the console:

16.0 2.0 3.0 13.0
5.0 11.0 10.0 8.0
9.0 7.0 6.0 12.0
4.0 14.0 15.0 1.0

Create a .NET Application That Calls the Deployed
Function
This example shows how you can call a deployed MATLAB function from a
.Net application using MATLAB Production Server In your .Net code, you
must:

• Create a Microsoft Visual Studio® Project

• Create a Reference to the Client Run-Time Library

• Design the .NET interface in C#

2-14

Deploy MATLAB® Code with MATLAB® Production Server™

• Write, build, and run the .NET application

This task is typically performed by .Net application programmer. This part
of the tutorial assumes you have Microsoft Visual Studio and .Net installed
on your computer.

Create a Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.

2 Click File > New > Project.

3 In the New Project dialog, select the project type and template you want to
use. For example, if you want to create a C# Console Application, select
Windows in the Visual C# branch of the Project Type pane, and select
the C# Console Application template from the Templates pane.

4 Type the name of the project in the Name field (Magic, for example).

5 Click OK. Your Magic source shell is created, typically named Program.cs,
by default.

Create a Reference to the Client Run-Time Library

Create a reference in your MainApp code to the MATLAB Production Server
client run-time library. In Microsoft Visual Studio, perform the following
steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on
the right side), select the name of your project, Magic, highlighting it.

2 Right-click Magic and select Add Reference.

3 In the Add Reference dialog box, select the Browse
tab. Browse to the MATLAB Production Server client
runtime, installed at $MPS_INSTALL\client\dotnet. Select
MathWorks.MATLAB.ProductionServer.Client.dll.

4 Click OK. MathWorks.MATLAB.ProductionServer.Client.dll is now
referenced by your Microsoft Visual Studio project.

2-15

2 Getting Started With MATLAB® Production Server™

Design the .NET Interface in C#

In this example. you invoke mymagic.m, hosted by the server, from a .NET
client, through a .NET interface.

To match the MATLAB function mymagic.m, write a .NET interface named
Magic.

function m = mymagic(in)
m = magic(in);

public interface Magic
{

double[,] mymagic(int in1);
}

Note the following:

• The .NET interface has the same number of inputs and outputs as the
MATLAB function.

• You are deploying one MATLAB function, therefore you define one
corresponding .NET method in your C# code.

• Both MATLAB function and .NET interface process the same types: input
type int and the output type two-dimensional double.

• You specify the name of your generic CTF archive (magic, which resides
in your auto_deploy folder) in your URL, when you call CreateProxy
("http://localhost:9910/magic").

Write, Build, and Run the .NET Application

Create a C# interface named Magic in Microsoft Visual Studio by doing the
following:

1 Open the Microsoft Visual Studio project, MagicSquare, that you created
earlier.

2 In Program.cs tab, paste in the code below.

2-16

Deploy MATLAB® Code with MATLAB® Production Server™

Note Take care to ensure you reference the precise name of the CTF
archive you are hosting on your server, as well as the port number where
your server listens for client requests. For example, in the italicized line
in the code below, the URL value ("http://localhost:9910/magic")
contains both CTF archive name (magic) and port number (9910).

C# Namespace Magic

using System;

using System.Net;

using MathWorks.MATLAB.ProductionServer.Client;

namespace Magic

{

public class MagicClass

{

class CustomConfig : MWHttpClientConfig

{

public int TimeoutMilliSeconds

{

get { return 120000; }

}

}

public interface Magic

{

double[,] mymagic(int in1);

}

public static void Main(string[] args)

{

MWClient client = new MWHttpClient();

try

{

Magic me =

client.CreateProxy<Magic>

(new Uri("http://localhost:9910/magic"));

double[,] result1 = me.mymagic(4);

2-17

2 Getting Started With MATLAB® Production Server™

print(result1);

}

catch (MATLABException ex)

{

Console.WriteLine("{0} MATLAB exception caught.", ex);

Console.WriteLine(ex.StackTrace);

}

catch (WebException ex)

{

Console.WriteLine("{0} Web exception caught.", ex);

Console.WriteLine(ex.StackTrace);

}

finally

{

client.Close();

}

Console.ReadLine();

}

public static void print(double[,] x)

{

int rank = x.Rank;

int [] dims = new int[rank];

for (int i = 0; i < rank; i++)

{

dims[i] = x.GetLength(i);

}

for (int j = 0; j < dims[0]; j++)

{

for (int k = 0; k < dims[1]; k++)

{

Console.Write(x[j,k]);

if (k < (dims[1] - 1))

{

Console.Write(",");

}

}

Console.WriteLine();

2-18

Deploy MATLAB® Code with MATLAB® Production Server™

}

}

}

}

3 Build the application. Click Build > Build Solution.

4 Run the application. Click Debug > Start Without Debugging. The
program returns the following console output:

16,2,3,13
5,11,10,8
9,7,6,12
4,14,15,1

2-19

2 Getting Started With MATLAB® Production Server™

2-20

3

MATLAB Code Deployment

• “Write MATLAB Code for Deployment ” on page 3-2

• “Create a Deployable CTF Archive from MATLAB Code” on page 3-6

• “Share the Deployable CTF Archive ” on page 3-11

3 MATLAB Code Deployment

Write MATLAB Code for Deployment

In this section...

“Deployment Coding Guidelines ” on page 3-2

“State-Dependent Functions” on page 3-2

“Deploying MATLAB Functions Containing MEX Files” on page 3-4

“Unsupported MATLAB Data Types for Client and Server Marshaling”
on page 5-3

Deployment Coding Guidelines
MATLAB coding guidelines are essentially the same for both the deployment
products and MATLAB Production Server with the important distinctions
regarding functions that depend on MATLAB state.

Functions you deploy with MATLAB Production Server cannot be assumed to
retain access to the same instance of the MATLAB Compiler Runtime, since
the workers can access a number of different MCR instances. Therefore, when
using MATLAB Production Server you must take extra care to ensure that
state has not been changed or invalidated. See “State-Dependent Functions”
on page 3-2 for more information.

Refer to “Write Deployable MATLAB Code” in the MATLAB Compiler
documentation for general guidelines about deploying MATLAB code.

State-Dependent Functions
MATLAB code that you want to deploy often carries state—a specific data
value in a program or program variable.

Does My MATLAB Function Carry State?
Example of carrying state in a MATLAB program include, but are not limited
to:

• Modifying or relying on the MATLAB path and the Java class path

3-2

Write MATLAB Code for Deployment

• Accessing MATLAB state that is inherently persistent or global. Some
example of this include:

- Random number seeds

- Handle Graphics® root objects that retain data

- MATLAB or MATLAB toolbox settings and preferences

• Creating global and persistent variables.

• Loading MATLAB objects (MATLAB classes) into MATLAB. If you access a
MATLAB object in any way, it loads into MATLAB.

• Calling MEX files, Java methods, or C# methods containing static variables.

Defensive Coding Practices
If your MATLAB function not only carries state, but relies on it for your
function to properly execute, you must take additional steps (listed in this
section) to ensure state retention.

When you deploy your application, consider cases where you carry state, and
safeguard against that state’s corruption if needed. Assume that your state
may be changed and code defensively against that condition.

The following are examples of “defensive coding” practices:

Reset System-Generated Values in the Deployed Application. If you
are using a random number seed, for example, reset it in your deployed
application program to ensure the integrity of your original MATLAB function.

Validate Global or Persistent Variable Values. If you must use global or
persistent variables, always validate their value in your deployed application
and reset if needed.

Ensure Access to Data Caches. If your function relies on cached transaction
replies, for instance, ensure your deployed system and application has access
to that cache outside of the MATLAB environment.

3-3

3 MATLAB Code Deployment

Use Simple Data Types When Possible. Simple data types are usually
not tied to a specific application and means of storing state. Your options for
choosing an appropriate state-preserving tool increase as your data types
less complicated and specific.

Techniques for Preserving State
The most appropriate method for preserving state depends largely on the
type of data you need to save.

• Databases provide the most versatile and scalable means for retaining
stateful data. The database acts as a generic repository and can generally
work with any application in an enterprise development environment.
It does not impose requirements or restrictions on the data structure or
layout. Another related technique is to use comma-delimited files, in
applications such as Microsoft Excel®.

• Most data that is created in MATLAB, or from MATLAB applications, can
be saved using MATLAB LOAD and SAVE commands and MAT files. See
“Use MATLAB Data Files (MAT Files) in Compiled Applications” in the
MATLAB Compiler documentation for more information and an example of
saving state in a MAT file.

• Data that is specific to a third-party programming language, such as Java
and C#, can be retained using a number of techniques. Consult the online
documentation for the appropriate third-party vendor for best practices
on preserving state.

Deploying MATLAB Functions Containing MEX Files
If the MATLAB function you are deploying uses MEX files, ensure that
the system running MATLAB Production Server is running the version of
MATLAB Compiler used to create the MEX files.

Coordinate with your Server Administrator and Application Developer as
needed.

3-4

Write MATLAB Code for Deployment

Unsupported MATLAB Data Types for Client and
Server Marshaling
These data types are not supported for marshaling between MATLAB
Production Server server instances and clients:

• MATLAB function handles

• Complex (imaginary) data

• Sparse arrays

Note See Appendix A, “Data Conversion Rules” for a complete list of
conversion rules for supported MATLAB, .NET, and Java types.

3-5

3 MATLAB Code Deployment

Create a Deployable CTF Archive from MATLAB Code

In this section...

“Prerequisites for Deployable Archive Creation” on page 3-6

“Build a Deployable CTF Archive” on page 3-6

Prerequisites for Deployable Archive Creation
Before you create a deployable archive to host your MATLAB code with
MATLAB Production Server, ensure you have:

• Installed the product and the MATLAB Compiler Runtime (MCR)

• Written MATLAB code that is compliant with deployable code guidelines.
See “Write MATLAB Code for Deployment ” on page 3-2 for details.

In order to share the deployable archive, a server must be created and started.
See “Share the Deployable CTF Archive ” on page 3-11 for a description of
the complete workflow.

Build a Deployable CTF Archive
Do the following, to create a deployable CTF archive from MATLAB code.

1 Start MATLAB, if you have not done so already.

2 Type deploytool at the MATLAB command prompt, and press Enter. The
Deployment Project dialog box opens.

3-6

Create a Deployable CTF Archive from MATLAB Code

The Deployment Project Dialog Box

3 Create a deployment project using the Deployment Project dialog box:

a Type name of your project, in the Name field.

b Enter the location of the project in the Location field.

c Select Generic CTF as the target for the deployment project from the
Type drop-down menu.

Note To deploy MATLAB functions with MATLAB Production Server,
you must select Generic CTF.

d Click OK.

Tip You can inspect the values in the Settings dialog before building your

project. To do so, click the Action icon () on the toolbar, and then click
Settings. Verify where your src and distrib folders will be created
because you will need to reference these folders later.

3-7

3 MATLAB Code Deployment

4 On the Build tab:

a Click Add files to open the Add Files dialog box.

b Select the MATLAB file(s) you want to deploy and click Open.

5 When you complete your changes, click the Build button (). When the
build finishes, click Close to dismiss the dialog box.

What Is a Deployable Archive?
A deployable archive is a compressed bundle of files created by the Deployment
Tool. It is the same CTF archive created by MATLAB Compiler. The archive
contains all the MATLAB-based content (MATLAB files, MEX-files, and so
on) associated with the MATLAB function(s) being deployed. The generic
archive is designed to be hosted by MATLAB Production Server instances and
accessed by all supported clients. All MATLAB files are encrypted in the CTF
archive using the Advanced Encryption Standard (AES) cryptosystem.

Modifying Deployed Functions
Once you have built a deployable CTF archive with the deployment tool, you
can modify your MATLAB code, recompile with Deployment Tool, and see the
change instantly reflected in the archive hosted on your server. This is known
as “hot deploying” or “redeploying” a function.

To Hot Deploy, you must have a server created and running, with the CTF
archive you have built in the server’s auto-deploy folder.

The server deploys the updated version of your archive when on the following
occurs:

• Compiled archive has an updated time stamp

• Change has occurred to the archive contents (new file or deleted file)

It takes a maximum of five seconds to redeploy a function using Hot
Deployment. It takes a maximum of ten seconds to undeploy a function
(remove the function from being hosted).

3-8

Create a Deployable CTF Archive from MATLAB Code

To use Hot Deployment as default behavior for building deployable archives
with the Deployment Tool, modify your Deployment Tool preferences to specify
your auto-deploy folder as your output folder (distrib folder) location.

See “Share the Deployable CTF Archive ” on page 3-11 for more information.

3-9

3 MATLAB Code Deployment

What Gets Built?
After you build your deployable CTF Archive with the Deployment Tool, you
have the following files in the src and distrib subfolders of your project
folder.

These Subfolders of the Project
Folder...

Contain these files...

src • project_name.ctf — Complete
CTF archive (contains all source
files — for internal use only)

• Log files — for debugging

distrib • project_name.ctf— Deployable
CTF archive to be hosted by server
in auto_deploy folder.

For More Information

If you want to... See...

• Perform basic MATLAB
Programmer tasks

• Understand how the deployment
products process your MATLAB
functions

• Understand how the deployment
products work together

• Explore guidelines about writing
deployable MATLAB code

“Write Deployable MATLAB Code”
in the MATLAB Compiler User’s
Guide.

Get help using the Deployment Tool From the Deployment Tool, click the

Actions icon () and select Help.

3-10

Share the Deployable CTF Archive

Share the Deployable CTF Archive
After you create the deployable archive, share it with clients of MATLAB
Production Server by copying it to your server, for hosting.

In order to share the deployable archive, a server must be created and started.

1 Locate your deployable archive in the distrib subfolder of your Deployment
Tool project folder. It will be named project_name.ctf. The locations of
your project folders are defined in the Deployment Tool Settings.

2 Copy project_name.ctf to the \server_name\auto_deploy folder in your
server instance.

For example, if your server is named prod_server_1 and located in C:\tmp,
copy project_name.ctf to C:\tmp\prod_server_1\auto_deploy.

Note Once you deploy a MATLAB function using MATLAB Production
Server, any future changes made to your MATLAB function, after recompiling
with the Deployment Tool, are immediately available in the CTF archive that
resides in the auto_deploy folder.

For More Information

If you want to learn more
about...

See...

Installation and licensing for
MATLAB Production Server

“Product Installation and Licensing”
on page 4-5

What a server instance is and how it
processes requests

“Server Overview” on page 4-2

Creating new server instances “Server Creation” on page 4-10

Installing the MCR “MATLAB Compiler Runtime (MCR)
Installation” on page 4-13

MATLAB Production Server clients “MATLAB® Production Server™
Client Overview” on page 5-2

3-11

3 MATLAB Code Deployment

3-12

4

Server Management

• “Server Overview” on page 4-2

• “Product Installation and Licensing” on page 4-5

• “Server Creation” on page 4-10

• “MATLAB Compiler Runtime (MCR) Installation” on page 4-13

• “Configuration File Customization” on page 4-14

• “Server Startup” on page 4-18

• “Server Status Verification” on page 4-21

• “Server Troubleshooting” on page 4-24

4 Server Management

Server Overview

In this section...

“What is a Server?” on page 4-2

“How Does a Server Manage its Work?” on page 4-2

What is a Server?
You can create any number of server instances using MATLAB Production
Server. Each server instance can host any number of deployable archives
containing MATLAB code. You may find it helpful to create one server for
all archives relating to a particular application, or one server to host code
strictly for testing, and so on.

A server instance is considered to be one unique configuration of the MATLAB
Production Server product. Each configuration has its own parameter settings
file (main_config) as well as its own set of diagnostic files (log files, Process
Identification (pid) files, endpoint files).

In addition, each server has it’s own auto_deploy folder, which contains the
deployable archives you want the server to host for clients.

The server also manages the MATLAB Compiler Runtime (MCR), which
enables MATLAB code to execute. The settings in main_config determine
how each server interacts with the MCR to process clients requests. You
can set these parameters according to your performance requirements and
other variables in your IT environment.

How Does a Server Manage its Work?
A server processes a transaction using these steps:

1 The client sends MATLAB function calls to the master server process (the
main process on the server).

2 MATLAB function calls are passed to one or more MCR Workers (An MCR
session).

3 MATLAB functions are executed by the MCR Worker.

4-2

Server Overview

4 Results of MATLAB function execution are passed back to the master
server process.

5 Results of MATLAB function execution is passed back for processing by
the client.

MATLAB® Production Server™ Data Flow from Client to Server and Back

The server is the middleman in the MATLAB Production Server environment.
It simultaneously accepts connections from clients, and then dispatches MCR
Workers — MATLAB sessions — to process client requests to the MCR. By
defining and adjusting the number of workers and threads available to a
server, you tune respectively for capacity and throughput.

• Workers (capacity management) — The number of MCR Workers available
to a server is defined by --num-workers.

Each MCR worker dispatches one MATLAB execution request to the MCR,
interacting with one client at a time. By defining and tuning the number of
workers available to a server, you set the number of concurrent MATLAB
execution requests that can be processed simultaneously. --num-workers
should roughly correspond to the number of cores available on the local
host.

• Threads (throughput management) (--num-threads) — The number
of threads (units of processing) available to the master server process.

4-3

4 Server Management

Throughput is the rate at which data moves during one complete pass from
client to server (represented in figure MATLAB® Production Server™ Data
Flow from Client to Server and Back on page 4-3).

The server does not allocate a unique thread to each client connection.
Rather, when data is available on a connection, the required processing is
scheduled on a pool of threads. --num-threads sets the size of that pool or
the number of request-processing threads available in the master server
process. The threads in the pool do not execute MATLAB code directly;
there is a single thread within each MCR worker process that executes
MATLAB code on the client’s behalf. The number of threads you define
to a server should roughly correspond to the number of cores available
on the local host.

4-4

Product Installation and Licensing

Product Installation and Licensing

In this section...

“Install MATLAB® Production Server™” on page 4-5

“License Management for MATLAB® Production Server™” on page 4-8

Install MATLAB Production Server

Installation Prerequisites
If you plan to install on Windows, ensure that the system on which you install
MATLAB Production Server does not depend on access to files located on
a network drive.

For stable results in a production environment, servers created with MATLAB
Production Server should always have local access to the deployable CTF
archives that they host.

Run the Installation Wizard

1 Insert the installation DVD into your computer. If the MathWorks®

Installer does not automatically start, run setup.exe.

2 Follow the instructions in the Installation Wizard. For help completing the
wizard, see the MATLAB Installation Guide. As you run the installation
wizard, note the following:

• If you do not already have the License Manager installed, it will be
installed by default unless you specify otherwise, using the Custom
installation option. The License Manager installed is the same program
installed by default with an installation of MATLAB.

• If you install the product using the internet, you will be taken to the
Licensing Center to complete the licensing process

Download and Install the MATLAB Compiler Runtime (MCR)
The MATLAB Compiler Runtime (MCR) is a standalone set of shared libraries
that enables the execution of compiled MATLAB applications or components

4-5

4 Server Management

on computers that do not have MATLAB installed. When used together,
MATLAB Production Server and the MCR enable you to create and distribute
mathematical applications or software components quickly and securely.

Download and Install the latest version of the MATLAB Compiler
Runtime (MCR) from the Web, on the MATLAB Compiler Runtime page at
http://www.mathworks.com/products/compiler/mcr.

For more information about the MCR, including alternate methods
of installing it, see “Distributing MATLAB Code Using the MATLAB
Compiler Runtime (MCR)” in the MATLAB Compiler section of MathWorks
Documentation Center.

Compatibility Considerations for MATLAB Compiler Runtime (MCR)
and Deployed Components. In order to deploy a generic CTF archive
created with the Deployment Tool, you install a version of the MCR that is
compatible with the version of MATLAB you used to create your archive.

MATLAB Production Server version R2012b is only compatible with MCR
version 8.0.

Run mps-setup to Set Location of MATLAB Compiler Runtime
(MCR)
Each server that you create with MATLAB Production Server has its own
configuration file that defines various server management criteria.

The mps-setup command line wizard searches for MCR instances and sets
the default path to the MATLAB Compiler Runtime (MCR) for all servers
you create with the product.

If a default value already exists in server_name/config/mcrroot, it is
updated with the value specified when you run the command line wizard.

To run the command line wizard, do the following after first downloading
and performing the “MATLAB Compiler Runtime (MCR) Installation” on
page 4-13:

1 Ensure you have logged on with administrator privileges.

4-6

http://www.mathworks.com/products/compiler/mcr/
http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/help/documentation-center.html
http://www.mathworks.com/help/documentation-center.html

Product Installation and Licensing

2 At the system command prompt, run mps-setup from the script folder.
Alternately, add the script folder to your system PATH environment
variable to run mps-setup from any folder on your system. The script
folder is located at MPS_INSTALL\script, where MPS_INSTALL is the
location in which MATLAB Production Server is installed. For example,
on Windows, the default location is: C:\Program Files\MATLAB\MATLAB
Production Server\R2012b\script\mps-setup.

3 Follow the instructions in the command line wizard.

4 Enter y to confirm or n to specify a default MCR location for all server
configurations created with MATLAB Production Server.

Run mps-setup in Non-Interactive Mode for Silent Install. You can also
run mps-setup without interactive command input for silent installations.

To run mps-setup, specify the path name of the MCR as a command line
argument. For example, on Windows®:

mps-setup "C:\Program Files\MATLAB\MATLAB Compiler Runtime\v8.0"

Disable Windows Interactive Error Reporting (Optional)
If you run MATLAB Production Server on Windows, you may want to first
disable Windows Interactive Error Reporting using the DontShowUIWindows
Error Reporting (WER) setting.

If the system on which you are running MATLAB Production Server is not
monitored frequently you may want to disable Windows Interactive Error
Reporting to avoid processing disruptions.

See WER Settings for Windows Development at
http://msdn.microsoft.com/en-us/library/windows/
desktop/bb513638(v=vs.85).aspx for complete information.

Ensure Deployment Architecture Compatibility
Consider if the computers running MATLAB, as well as server instances of
MATLAB Production Server that host your code, are 32-bit or 64-bit.

4-7

http://msdn.microsoft.com/en-us/library/windows/desktop/bb513638(v=vs.85).aspx

4 Server Management

Your operating system and bit architectures must be compatible (or ideally,
the same) across machines running MATLAB Production Server and your
deployed components.

For additional compatibility considerations, see the MATLAB documentation.

Installing 32-Bit Version on 64-Bit Systems. You can install a 32-bit
image of MATLAB Production Server on a 64-bit version of Windows.

If you do so, you will receive a message prompting you to run set
MPS_ARCH=win32.

License Management for MATLAB Production Server
In addition to following instructions in the License Center to obtain and
activate your license, do the following in order to set up and manage licensing
for MATLAB Production Server:

Specify or Verify License Server Options in Server Configuration
File
Specify or verify values for License Server options in the server configuration
file (main_config). You create a server by running the mps-new command.

Edit the configuration file for the server. Open the file
server_name/config/main_config and specify or verify parameter values
for the following options. See the comments in the server configuration file for
complete instructions and default values.

• --license — Configuration option to specify the license servers and/or
the license files. You can specify multiple license servers including port
numbers (port_number@license_server_name), as well as license files,
with one entry in main_config. List where you want the product to search,
in order of precedence, using semi-colons (;) as separators on Windows or
colons (:) as separators on Linux.

For example, on a Linux system, if you specify this value for --license:

27000@hostA:/opt/license/license.dat:27001@hostB:./license.dat

the system will search these resources in this order:

4-8

Product Installation and Licensing

1 27000@hostA: (hostA configured on port 27000)

2 /opt/license/license.dat (local license data file)

3 27001@hostB: (hostB configured on port 27001)

4 ./license.dat (local license data file)

• --license-grace-period — The maximum length of time MATLAB
Production Server responds to HTTP requests, after license server
heartbeat has been lost (before entering hiberation status). See FLEXlm®

documentation for more on heartbeats and related license terminology.

• --license-poll-interval — The interval of time that must pass,
after license server heartbeat has been lost and MATLAB Production
Server stops responding to HTTP requests (effectively entering
hiberation status), before license server is polled, in order to verify and
checkout a valid license. Polling will occur at the interval specified by
--license-poll-interval until license has been successfully checked-out.
See FLEXlm documentation for more on heartbeats and related license
terminology.

Verify Status of License Server using mps-status
When you enter an mps-status command, the status of the server and the
associated license is returned.

Forcing a License Checkout Using mps-license-reset
Use the mps-license-reset server command to force MATLAB Production
Server to checkout a license. You can use this command at any time, providing
you do not want to wait for MATLAB Production Server to verify and checkout
a license at an interval established by a server configuration option such as
--license-grace-period or --license-poll-interval.

4-9

4 Server Management

Server Creation

In this section...

“Prerequisites” on page 4-10

“Procedure” on page 4-10

“Create a Server” on page 4-11

“For More Information” on page 4-12

Prerequisites
Before creating a server, ensure you have completed “Product Installation
and Licensing” on page 4-5.

Procedure
Before you can deploy your MATLAB code with MATLAB Production Server,
you need to create a server instance to host your deployable archive.

A server instance is considered to be one unique configuration of the MATLAB
Production Server product. Each configuration has its own parameter settings
file (main_config) as well as its own set of diagnostic files.

To create a server configuration or instance, do the following:

1 From the system command prompt, navigate to where you want to create
your server instance.

2 Enter the following command from the system prompt:

mps-new [path/]server_name [-v]

where:

• path is the path to the server instance and configuration you want to
create for use with the MATLAB Production Server product.

If you are creating a server instance in the current folder, you do not
need to specify a full path. Only specify the server name.

4-10

Server Creation

• server_name — is the name of the server instance and configuration
you want to create.

• -v — enables verbose output, giving you information and status about
each folder created in the server configuration.

Upon successful completion of the command, MATLAB Production Server
creates a new server instance.

Create a Server
This example shows how to create a new server instance with the MATLAB
Production Server:

1 Select a folder where you want to create prod_server_1. For example,
choose the /tmp folder, off your root.

cd /tmp

2 Enter the following command:

mps-new prod_server_1 -v

mps-new creates a new server instance named prod_server_1 in /tmp.
Enabling the verbose (-v) option, allows you to see the results of the
command as each folder in the hierarchy is built.

The command produces the following output:

prod_server_1/.mps-version...ok
prod_server_1/config/...ok
prod_server_1/config/main_config...ok
prod_server_1/endpoint/...ok
prod_server_1/auto_deploy/...ok
prod_server_1/.mps-socket/...ok
prod_server_1/log/...ok
prod_server_1/pid/...ok

For more information on the files created by mps-new, see “What is a Server?”
on page 4-2

4-11

4 Server Management

Note Before using a server, you must start it. See “Server Startup” on page
4-18.

For More Information

For information about.... See....

How to solve errors when creating
a server

“Server Troubleshooting” on page
4-24

The mps-new command mps-new

Product installation “Product Installation and Licensing”
on page 4-5

4-12

MATLAB Compiler Runtime (MCR) Installation

MATLAB Compiler Runtime (MCR) Installation
If you already have the MATLAB Compiler Runtime (MCR) installed, skip
this step and “Configuration File Customization” on page 4-14.

Only MCR version 8.0 is compatible MATLAB Production Server version
R2012b.

Install the MATLAB Compiler Runtime (MCR)
Download and Install the latest version of the MATLAB Compiler
Runtime (MCR) from the Web, on the MATLAB Compiler Runtime page at
http://www.mathworks.com/products/compiler/mcr/.

For more information about the MCR, including alternate methods
of installing it, see “Distributing MATLAB Code Using the MATLAB
Compiler Runtime (MCR)” in the MATLAB Compiler section of MathWorks
Documentation Center.

4-13

http://www.mathworks.com/products/compiler/mcr/
http://www.mathworks.com/products/compiler/mcr/
http://www.mathworks.com/help/documentation-center.html
http://www.mathworks.com/help/documentation-center.html

4 Server Management

Configuration File Customization

In this section...

“Prerequisites” on page 4-14

“Procedure” on page 4-14

“Specify the Installed MCR to Your Server Instance” on page 4-15

“For More Information” on page 4-17

Prerequisites
Before customizing the server configuration file with the location of the
MATLAB Compiler Runtime (MCR), ensure you have:

• Created a server instance

• Installed the MATLAB Compiler Runtime

Procedure
Since the server interacts with the MCR to process client requests, you need
to specify to the server where the MCR is located before you can start a server.

In addition, you set other critical configuration options that determine
how a server hosts CTF archives and otherwise operates in a deployment
environment.

You do this by editing the server configuration file.

1 Navigate to the server instance you created. Open the top-most folder,
labeled with the server name.

2 In the config folder, open main_config with a text editor of your choice.

3 In main_config, find the string --mcr-root, the configuration file option
that designates the location of the MCR.

4 Specify the absolute path to the MCR, after entering one space after the
option --mcr-root.

4-14

Configuration File Customization

5 Save main_config and exit.

Specify the Installed MCR to Your Server Instance
This example shows how to specify the installed location of the MATLAB
Compiler Runtime (MCR) to your server instance. See “MATLAB Compiler
Runtime (MCR) Installation” on page 4-13 for details about how to install
the MCR.

1 Navigate to /tmp/prod_server_1.

2 Open the folder labeled prod_server_1.

3 Open the folder labeled config.

4 Open main_config with a text editor of your choice. Examples of text
editors include vi, Emacs, Wordpad, and Microsoft Visual Studio.

5 Find the configuration file option --mcr-root in main_config. By default,
in a new server instance, the value of --mcr-root will be:

m C R r O O T u N s E T

6 Modify the --mcr-root option default value to point to the installed MCR
you want to work with. For example:

--mcr-root C:\Program Files\MATLAB\MATLAB Compiler Runtime\vnnn

Note You must specify the version number of the MCR (vnnn) in
--mcr-root. MCR versions you specify must be compatible with MATLAB
Production Server.

7 Save main_config and exit.

About the Server Configuration File (main_config)
To change any MATLAB Production Server parameters, edit the main_config
configuration file that corresponds to your specific server instance:

server_name/config/main_config

4-15

4 Server Management

Keep the following in mind when editing main_config:

• Each server has its own main_config configuration file.

• You enter only one configuration file parameter and related options per
line. Each configuration file parameter starts with two dashes (--).

• Any line beginning with a pound sign (#) is ignored as a comment.

• Lines of white space are ignored.

Information about each configuration file parameter is included in the
comments of each main_config file. The following are critical parameters to
set or verify when running a server.

Setting the Location of the MATLAB Compiler Runtime (MCR). Use
the --mcr-root parameter to specify the location of the MATLAB Compiler
Runtime (MCR) to the server instance.

Setting Default Port Number for Client Requests. Use the --http
parameter to set the default port number on which the server listens for
client requests.

Setting Number of Available Workers. Use the --num-workers
parameter to set the number of concurrent MATLAB execution requests that
can be processed simultaneously.

See “Server Overview” on page 4-2 for more information.

Setting Number of Available Threads. Use the --num-threads parameter
to set the number of request-processing threads available to the master server
process.

See “Server Overview” on page 4-2 for more information.

4-16

Configuration File Customization

Note For .NET Clients, the HTTP 1.1 protocol restricts the maximum
number of concurrent connections from a client to a server to two.

This restriction only applies when the client and server are connected
remotely. A local client and server connection has no such restriction.

To specify a higher number of connections than two for remote
connection, use the NET classes System.Net.ServicePoint and
System.Net.ServicePointManager to modify maximum concurrent
connections.

For example, to specify four concurrent connections you would code the
following:

ServicePointManager.DefaultConnectionLimit = 4;
MWClient client = new MWHttpClient(new MyConfig());
MPSClient mpsExample = client.CreateProxy(new Uri("http://user01:9910/mpsex

For More Information

For information about.... See....

Downloading and installing the
MCR

“MATLAB Compiler Runtime (MCR)
Installation” on page 4-13

Product installation “Product Installation and Licensing”
on page 4-5

4-17

4 Server Management

Server Startup

In this section...

“Prerequisites” on page 4-18

“Procedure” on page 4-18

“Start a Server” on page 4-19

“For More Information” on page 4-19

Prerequisites
Before attempting to start a server, ensure you have:

• Installed the MATLAB Compiler Runtime (MCR)

• Created a server

• “Run mps-setup to Set Location of MATLAB Compiler Runtime (MCR)”
on page 4-6

Procedure
To start a server, do the following:

1 Open a system command prompt.

2 Enter the following command:

mps-start [-C path/]server_name [-f]

where:

• -C path/ is the path to the server instance and configuration you want
to create for use with the MATLAB Production Server product. path
should end with the server name.

• server_name — is the name of the server instance and configuration
you want to start or stop.

• -f — forces command to succeed, regardless or whether the server is
already started or stopped.

Upon successful completion of the command, the server instance is active.

4-18

Server Startup

Note If needed, query the status of the server instance that you started to
verify the server is running.

Start a Server
This example shows how to start a server instance using the instance you
created previously. In this example, you start prod_server_1 from a location
other than the server instance folder (C:\tmp\prod_server_1).

1 Open a system command prompt.

2 Enter the following command to start prod_server_1:

mps-start -C \tmp\prod_server_1

prod_server_1 is now active and ready to receive requests.

For More Information

For information about.... See....

Downloading and installing the
MCR

“Download and Install the MATLAB
Compiler Runtime (MCR)” on page
4-5

How to solve errors when starting or
stopping a server

“Diagnose a Server Problem” on page
4-24 in the MATLAB Production
Server User’s Guide.

The mps-start command mps-start command reference page
in the MATLAB Production Server
User’s Guide.

Stopping the server with the
mps-stop command

mps-stop command reference page
in the MATLAB Production Server
User’s Guide.

4-19

4 Server Management

For information about.... See....

Verifying status of a server with the
mps-status command

mps-status command reference
page in the MATLAB Production
Server User’s Guide.

Product installation

4-20

Server Status Verification

Server Status Verification

In this section...

“Prerequisite” on page 4-21

“Procedure” on page 4-21

“Verify Status of a Server” on page 4-21

“For More Information” on page 4-23

Prerequisite
Before attempting to verify the status of a server instance, ensure you have
first created a server.

Procedure
To verify the status of a server instance, do the following:

1 Open a system command prompt.

2 Enter the following command:

mps-status [-C path/]server_name

where:

• -C path/ is the path to the server instance and configuration you want
to create for use with the MATLAB Production Server product. path
should end with the server name.

• server_name — is the name of the server instance and configuration
you want to start or stop.

Upon successful completion of the command, the server status displays.

Verify Status of a Server
This example shows how to verify the status of the server instance you started
in the previous example.

4-21

4 Server Management

In this example, you verify prod_server_1’s status, from a location other
than the server instance folder (C:\tmp\prod_server_1).

1 Open a system command prompt.

2 To ensure prod_server_1 is running, enter the following command:

mps-status -C \tmp\prod_server_1

If prod_server_1 is running, the following is displayed:

\tmp\prod_server_1 STARTED

The output confirms prod_server_1 is running. For more information on the
STOPPED status and the mps-stop command, see mps-stop and mps-restart

License Server Status Information
In addition to the status of the server, mps-status also displays the status of
the license server associated with the server you are verifying.

Possible statuses and their meanings follow:

This License Server Status
Message....

Means....

License checked out
The server has successfully been
served a license and the license is
assigned to the server whose status
is being polled. This status indicates
the server is operating with a valid
license.

Lost connection to the
license server, in grace
period

The connection between server
and license server has been lost.
Licenses are currently being served
for a limited grace period. License
is assumed to be associated with the
server.

4-22

Server Status Verification

This License Server Status
Message....

Means....

License server timeout,
assuming the license
reclaimed by the license server

The server is no longer associated
with a specific license or license
server after the license server
timeout has been reached or
exceeded. Licenses are currently
being served for a limited grace
period. The license is assumed to
no longer be assigned to the server
and assumed to be reclaimed by
the license server. For information
about grace periods, see “Specify or
Verify License Server Options in
Server Configuration File” on page
4-8.

License grace period
has expired. HTTP requests
temporarily disabled.

The server is no longer associated
with a specific license or license
server and the grace period has
expired. For information about
grace periods, see “Specify or Verify
License Server Options in Server
Configuration File” on page 4-8.

For More Information

For information about.... See....

The mps-status command mps-status command reference
page in the MATLAB Production
Server User’s Guide.

Stopping the server with the
mps-stop command

mps-stop command reference page
in the MATLAB Production Server
User’s Guide.

Restarting the server with the
mps-restart command

mps-restart command reference
page in the MATLAB Production
Server User’s Guide.

4-23

4 Server Management

Server Troubleshooting

In this section...

“Procedure” on page 4-24

“Diagnose a Server Problem” on page 4-24

“Server Diagnostic Tools” on page 4-25

“Common Error Messages and Resolutions” on page 4-28

“For More Information” on page 4-29

Procedure
To diagnose a problem with a server instance or configuration of MATLAB
Production Server, do the following, as needed:

• Check the logs for warnings, errors, or other informational messages.

• Check Process Identification Files (PID files) for information relating to
problems with MCR worker processes.

• Check Endpoint Files for information relating to problems relating to the
server’s bound external interfaces — for example, a problem connecting
a client to a server.

• Use server diagnostic tools, such as mps-which, as needed.

Diagnose a Server Problem
This example shows a typical diagnostic procedure you might follow to solve a
problem starting server prod_server_x.

After you issue the command:

mps-start prod_server_x

from within the server instance folder (prod_server_x), you get the following
error:

Server process exited with return code: 4
(check logs for more information)
Error while waiting for server to start: The I/O operation

4-24

Server Troubleshooting

has been aborted because of either a thread exit
or an application request

To solve this issue, you might check the log files for more detailed messages,
as follows:

1 Navigate to the server instance folder (prod_server_x) and open the log
folder.

2 Open main.err with any text editor. Note the following message listed
under Server startup error:

Dynamic exception type: class std::runtime_error
std::exception::what: bad MCR installation:
C:\Program Files\MATLAB\MATLAB Compiler Runtime\v717
(C:\Program Files\MATLAB\MATLAB Compiler Runtime\v717\bin\
win64\mps_worker_app could not be found)

3 The message indicates the installation of the MATLAB Compiler Runtime
(MCR) is incomplete or has been corrupted. To solve the problem, reinstall
the MCR.

Server Diagnostic Tools
Each server instance contains three sets of diagnostic files to help you
determine and solve problems with the server and associated processes

Log Files
Each server writes a log file containing data from both the main server
process, as well as the workers, named server_name/log/main.log. The
active log files are created in the folder identified aslog-root in main_config.

You can change the primary log folder name from the default value (log) by
setting the option --log-root in main_config.

The primary log folder contains the main.log file, as well as a symbolic link
to this file with the auto-generated name of main_date_fileID.log.

The stdout stream of the main server process is captured as log/main.out.

4-25

4 Server Management

The stderr stream of the main server process is captured as log/main.err.

Log Retention and Archive Settings. Log data is written to the server’s
main.log file for as long as a specific server instance is active, or until
midnight. When the server is restarted, log data is written to an archive log,
located in the archive log folder specified by --log-archive-root.

The archive log folder contains archived log with the auto-generated name of
main_date_fileID.log, as well as a symbolic link to the latest archived log
file, named main_latest.log.

You can set parameters that define when main.log is archived using the
following options in each server’s main_config file.

• --log-rotation-size — When main.log reaches this size, the active
log is written to an archive log (located in the folder specified by
--log-archive-root).

• --log-archive-max-size — When the combined size of all files in the
archive folder (location defined by --log-archive-root) reaches this
limit, archive logs are purged until the combined size of all files in the
archive folder is less than --log-archive-max-size. Oldest archive logs
are deleted first.

Specify values for these options using the following units and notations:

Represent these units
of measure...

Using this notation... Example

Byte b 900b

Kilobyte (1024 bytes) k 700k

Megabytes (1024
kilobytes)

m 40m

Gigabytes (1024
megabytes)

g 10g

Terabytes (1024
gigabytes)

t 2t

Petabytes (1024
terabytes)

p 1p

4-26

Server Troubleshooting

Note The minimum value you can specify for --log-rotation-size is
1 megabyte.

On Windows 32-bit systems, values larger than 232 bytes are not supported.
For example, specifying 5g is not valid on Windows 32-bit systems.

Best Practices for Log Management. Use these recommendations as
a guide when defining values for the options listed in “Log Retention and
Archive Settings” on page 4-26.

• Avoid placing --log-root and --log-archive-root on different physical
file systems.

• Place log files on local, not network, drives.

• Send MATLAB output to stdout. Develop an appropriate, consistent
logging strategy following best MATLAB coding practices. See MATLAB
Programming Fundamentals for guidelines.

Setting Log File Detail Levels. Each log level provides different levels
of information for troubleshooting. For complete information on all logging
levels and what details they provide, see the comments in the main_config
file. Before you call support, you should set logging detail to trace.

Process Identification Files (PID Files)
Each process that the server runs generates a Process Identification File (PID
File) in the folder identified as pid-root in main_config.

The main server PID file is main.pid; for each MCR Worker process, it is
worker-n.pid, where n is the unique identifier of the worker.

PID files are automatically deleted when a process exits.

Endpoint Files
Endpoint files are generated to capture information about the server’s bound
external interfaces. The files are created when you start a server instance
and deleted when you stop it.

4-27

4 Server Management

server_name/endpoint/http contains the IP address and port of the clients
connecting to the server. This information can be useful in the event that zero
(0) is specified in main_config, indicating that the server bind to a free port.

Common Error Messages and Resolutions
This section lists common troubleshooting scenarios, including error messages
and typical resolutions:

(404) Not Found

Commonly caused by requesting a component that is not deployed on the
server, or trying to call a function that is not exported by the given component.

Verify that the name of the CTF archive specified in your Uri is the same as
the name of the CTF archive hosted in your auto-deploy folder.

Error: Bad MCR Instance

Common causes of this message include:

• You are not properly qualifying the path to the MCR. You must include the
version number. For example, you need to specify:

C:\Program Files\MATLAB\MATLAB Compiler Runtime\vn.n

not

C:\Program Files\MATLAB\MATLAB Compiler Runtime

Error: Server Instance not Specified

MATLAB Production Server can’t find the server you are specifying.

Ensure you are either entering commands from the folder containing the
server instance, or are using the -C command argument to specify a precise
location of the server instance.

For example, if you created server_1 in C:\tmp\server_1, you would issue
the mps-start command from within that folder to avoid specifying a path
with the -C argument:

4-28

Server Troubleshooting

cd c:\tmp\server_1
mps-start server_1

For more information, see “Server Startup” on page 4-18.

For More Information

For information about.... See....

The mps-status command mps-status

Displaying which server has
allocated a client port with the
mps-which command

mps-which

4-29

4 Server Management

4-30

5

Client Programming

• “MATLAB® Production Server™ Client Overview” on page 5-2

• “Java Client” on page 5-4

• “.NET Client” on page 5-43

5 Client Programming

MATLAB Production Server Client Overview

In this section...

“What is a MATLAB® Production Server™ Client?” on page 5-2

“Create a MATLAB® Production Server™ Client” on page 5-2

“Unsupported MATLAB Data Types for Client and Server Marshaling”
on page 5-3

What is a MATLAB Production Server Client?
MATLAB Production Server Clients are client applications written in a
language supported by MATLAB Production Server (currently .NET/C# and
Java) that call deployed functions hosted on a server.

Create a MATLAB Production Server Client
The following represents an overview of how to create a client with the
MATLAB Production Server product.

1 Obtain the client run-time files, which are distributed with MATLAB
Production Server and installed in $MPS_INSTALL/client.

2 Agree on the signatures of the MATLAB functions (with the MATLAB
programmer) that comprise the services in the application. Each signature
maps directly to a MATLAB function signature. See the prerequisites
section in “Java Client” on page 5-4 and “.NET Client” on page 5-43 for
specific requirements of each client.

3 Configure your system with the appropriate software for working with
Java or .NET.

4 Write a Java or .NET interface and application program that creates a
client (MWClient) by instantiating MWHttpClient.

a Create a dynamic proxy for communicating with the MATLAB
Production Server-hosted service.

b Declare and throw exceptions as required.

5-2

MATLAB® Production Server™ Client Overview

c Free system resources using the close method of MWClient, after
making needed calls to your application.

Unsupported MATLAB Data Types for Client and
Server Marshaling
These data types are not supported for marshaling between MATLAB
Production Server server instances and clients:

• MATLAB function handles

• Complex (imaginary) data

• Sparse arrays

Note See Appendix A, “Data Conversion Rules” for a complete list of
conversion rules for supported MATLAB, .NET, and Java types.

5-3

5 Client Programming

Java Client

In this section...

“Java Client Coding Best Practices” on page 5-4

“Bond Pricing Tool with GUI for Java Client” on page 5-9

“Monte Carlo Simulation for Java Client” on page 5-15

“Code Multiple Outputs for Java Client” on page 5-24

“Code Variable-Length Inputs and Outputs for Java Client” on page 5-27

“Marshal MATLAB Structures (Structs) in Java” on page 5-29

“Data Conversion with Java and MATLAB Types” on page 5-36

Java Client Coding Best Practices
When writing Java interfaces for invoking MATLAB code, keep the following
in mind:

• The method name exposed by the interface must match the name of the
MATLAB function being deployed.

• The method must have the same number of inputs and outputs as the
MATLAB function.

• The method input and output types must be convertible to and from
MATLAB.

• If you are working with MATLAB structures, remember that the field
names are case-sensitive and must match in both the MATLAB function
and corresponding user-defined Java type.

• The name of the interface can be any valid Java name.

• Your code should support exception handling.

Java Client Prerequisites
Do the following to prepare your MATLAB Production Server Java
development environment.

5-4

Java Client

1 Install a Java IDE of your choice. Follow instructions on the Oracle Web
site for downloading Java, if needed.

2 Add mps_client.jar (located in $MPS_INSTALL\client\java) to your
Java CLASSPATH and Build Path (sometimes defined in separate GUIs,
depending on your IDE).

3 Generate one generic CTF archive in your server’s auto_deploy folder
for each MATLAB application you plan to deploy. For information about
creating a generic CTF archive with the Deployment Tool, see “Create a
Deployable CTF Archive from MATLAB Code” on page 3-6.

Your server’s main_config file should point to where MATLAB or your
MCR instance is installed (using mcr-root).

4 The server hosting your deployable CTF archive should be running.

Manage Client Lifecycle
A single Java Client connects to one or more servers available at various
URLs. Even though you create multiple instances of MWHttpClient, one
instance is capable of establishing connections with multiple servers.

Proxy objects communicate with the server until the close method of that
instance is invoked.

For a locally scoped instance of MWHttpClient, the Java client code looks
like the following:

Locally Scoped Instance

MWClient client = new MWHttpClient();
try{

// Code that uses client to communicate with the server
}finally{

client.close();
}

When using a locally scoped instance of MWHttpClient, tie it to a servlet.

5-5

http://www.oracle.com
http://www.oracle.com/us/technologies/java/index.html

5 Client Programming

When using a servlet, initialize the MWHttpClient inside the
HttpServlet.init()method and close it inside the HttpServlet.destroy()
method, as in the following code:

Servlet Implementation

public class MPSServlet extends HttpServlet{
private final MWClient client;

public void init(ServletConfig config) throws ServletException{
client = new MWHttpClient();

}

protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException,java.io.IOException{

// Code that uses client to communicate with the server
}

public void destroy(){
client.close();

}
}

Handling Java Client Exceptions
The Java interface must declare checked exceptions for the following errors:

Java Client Exceptions

Exception Reason(s) for Exception Additional Information

com.mathworks.mps.
client.MATLABException

A MATLAB error occurred when
a proxy object method was
executed.

The exception provides the
following:
• Stack trace

• Error ID

5-6

Java Client

Java Client Exceptions (Continued)

Exception Reason(s) for Exception Additional Information

• Error message

java.io.IOException • A network-related failure has
occurred.

• The server returns an HTTP
error of either 4xx or 5xx.

Use java.io.IOException to
handle an HTTP error of 4xx or
5xx in a particular manner.

Managing System Resources
A single Java client connects to one or more servers available at different
URLs. Instances of MWHttpClient can communicate with multiple servers.

All proxy objects, created by an instance of MWHttpClient, communicate with
the server until the close method of MWHttpClient is invoked.

Call close only if you no longer need to communicate with the server and
you are ready to release the system resources. Closing the client terminates
connections to all created proxies.

Configure Client Timeout Value for Connection with a Server
To prevent client and server deadlocks and to ensure client stability, consider
setting a timeout parameter when the client is connected with the server
and the server becomes unresponsive.

To set a timeout parameter in milliseconds, implement interface
MWHttpClientConfig in your client code. Use the overloaded constructor of
MWHttpClient, which takes in an instance of MWHttpClientConfig.

Configure the following properties:

• Interruptibility— Determines if a MATLAB function call may interrupt
while a client is waiting for a response from the server.

- true — Allow interruptions

- false — Do not allow interruptions

5-7

5 Client Programming

• Timeout — Time in milliseconds that the client is to wait for a response
from the server before timing out.

• Maximum connections per address — The maximum amount
of connections supported by one IP address. Default value is
system-dependent—new connections are created for an address as long as
it is supported by the system.

For example, to configure the client to:

• Allow interruptions from MATLAB function calls

• Timeout after no response from the server after 1.66 minutes (100000
milliseconds)

• Support a maximum of 10 connections per address

add the following to your client code.

MWClient client = new MWHttpClient(new MWHttpClientConfig(){
public int getMaxConnectionsPerAddress(){

return 10;
}

public long getTimeOutMs(){
return 10000;

}

public boolean isInterruptible(){
return true;

}
});

Configuring Number of Reusable Connections. You can configure the
number of reusable connections to the server in two ways:

• Use the default HTTP implementation (using the default construction
of MWHttpClient without any input). Set the system property
http.maxConnections. The value assigned to this property establishes
the number of connections to reuse.

5-8

Java Client

• Create MWHttpClient by passing an instance of MWHttpClientConfig.
Set the Interuptibility property to true and set the number of maximum
connections per address. This restricts the pool of open connections to the
maximum value set.

Where to Find the Javadoc
The API doc for the Java client is installed in $MPS_INSTALL/client.

Bond Pricing Tool with GUI for Java Client
This example shows an application that calculates a bond price from a simple
formula.

You run this example by entering the following known values into a simple
graphical interface:

• Coupon payment — C

• Number of payments — N

• Interest rate — i

• Value of bond or option at maturity — M

The application calculates price (P) based on the following equation:

P = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N

Objectives
The Bond Pricing Tool demonstrates the following features of MATLAB
Production Server:

• Deploying a simple MATLAB function with a fixed number of inputs and
a single output

• Deploying a MATLAB function with a simple GUI front-end for data input

• Using dispose() to free system resources

5-9

5 Client Programming

Where To Find the Example Code
All MATLAB and client code used to test and build client examples, can be
found at $MPS_INSTALL\examples.

The example code listed in the documentation is not complete. Complete code
is available in $MPS_INSTALL\examples, where $MPS_INSTALL is the location
where you installed MATLAB Production Server.

Step 1: Write MATLAB Code
Implement the Bond Pricing Tool in MATLAB, by writing the following code.
Name the code pricecalc.m.

The code is available in $MPS_INSTALL\examples\calculator.

function price = pricecalc(value_at_maturity, coupon_payment,...
interest_rate, num_payments)

C = coupon_payment;
N = num_payments;
i = interest_rate;
M = value_at_maturity;

price = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N;

end

Step 2: Create a Deployable CTF Archive with the Deployment
Tool

1 From MATLAB, start the Deployment Tool by entering deploytool at the
MATLAB command prompt.

2 In the Deployment Project dialog box, create a project:

a Enter BondTools in the Name field.

b Select a location to store the project and enter it in the Location field.

c In the Type drop-down, select Generic CTF.

d Click OK.

5-10

Java Client

The Deployment Tool creates your Generic CTF target project.

3 Add pricecalc.m to the deployment project:

a On the Build tab, in the Exported Functions area, click Add Files.

b In the Add Files dialog box, browse to
$MPS_INSTALL\examples\calculator, select pricecalc.m and click
Open.

4 In the Deployment Tool, click the Build icon (. When the build completes,
you will find a file named BondTools.ctf in your project distrib folder.

Step 3: Share the Deployable CTF Archive on a Server

1 Download the MATLAB Compiler Runtime, if needed at
http://www.mathworks.com/products/compiler/mcr. See “MATLAB
Compiler Runtime (MCR) Installation” on page 4-13 for more information.

2 Create a server using mps-new.

3 If you haven’t already done so, specify the location of the MATLAB
Compiler Runtime (MCR) to the server by editing the server configuration
file, main_config and specifying a path for --mcr-root. See “Configuration
File Customization” on page 4-14 for details.

4 Start the server using mps-start and verify it is running with mps-status.

5 Copy the BondTools.ctf file to theauto-deploy folder on the server
for hosting. See “Share the Deployable CTF Archive ” on page 3-11 for
complete details.

Step 4: Create the Java Client Code
Create a compatible client interface and method in Java to match MATLAB
function pricecalc.m, hosted by the server as BondTools.ctf, using the
guidelines in this section.

Additional Java files are also included that are typical of a
standalone application. The following example files can be found in
$MPS_INSTALL\examples\calculator.

5-11

http://www.mathworks.com/products/compiler/mcr

5 Client Programming

This Java code.... Provides this functionality....

BondPricingTool.java Runs the calculator application. The variable
values of the pricing function are declared in
this class.

BondTools.java Defines pricecalc method interface, which
is later used to connect to a server to invoke
pricecalc.m

BondToolsFactory.java Factory that creates new instances of
BondTools

BondToolsStub.java Java class that implements a dummy
pricecalc Java method. Creating a stub
method is a technique that allows for
calculations and processing to be added to the
application at a later time.

BondToolsStubFactory.java Factory that returns new instances of
BondToolsStub

RequestSpeedMeter.java Displays a GUI interface and accepts inputs
using Java Swing classes

ServerBondToolsFactory.java Factory that creates new instances of
MWHttpClient and creates a proxy that
provides an implementation of the BondTools
interface and allows access to pricecalc.m,
hosted by the server

When developing your Java code, note the following essential tasks, described
in the sections that follow. For more information about clients coding basics
and best practices, see “MATLAB® Production Server™ Client Overview” on
page 5-2, “Java Client” on page 5-4, and “Java Client Coding Best Practices”
on page 5-4.

This documentation references specific portions of the client code. You can
find the complete Java client code in $MPS_INSTALL\examples\calculator.

5-12

Java Client

Declare Java Method Signatures Compatible with MATLAB Functions
You Deploy. In order to work with the MATLAB functions you defined in
“Step 1: Write MATLAB Code” on page 5-10, declare the corresponding Java
method signature in the interface BondTools.java:

interface BondTools {
double pricecalc (double faceValue,

double couponYield,
double interestRate,
double numPayments)

throws IOException, MATLABException;
}

This interface creates an array of primitive double types, corresponding to the
MATLAB primitive types (Double, in MATLAB, unless explicitly declared)
in pricecalc.m. Note that there is a one-to-one mapping between the input
arguments in both the MATLAB function and the Java interface, and that
the interface specifies compatible type double. This compliance between the
MATLAB and Java signatures demonstrates the guidelines listed in “Java
Client Coding Best Practices” on page 5-4.

Instantiate MWClient, Create Proxy, and Specify Deployable CTF
Archive. In the ServerBondToolsFactory class, you perform typical
MATLAB Production Server client setup:

1 Instantiate MWClient with an instance of MWHttpClient:

...

private final MWClient client = new MWHttpClient();

2 Call createProxy on the new client instance, specifying the port number
(9910) and CTF archive name (BondTools) the server is hosting in the
auto-deploy folder:

...

public BondTools newInstance () throws Exception

{

return client.createProxy(new URL("http://user1.dhcp.mathworks.com:9910/BondTools"),

BondTools.class);

}

5-13

5 Client Programming

...

Use dispose() Consistently to Free System Resources. This application
makes use of the Factory pattern to encapsulate creation of several types of
objects.

Any time you create objects — and therefore allocate resources — ensure you
free those resources using dispose().

For example, note that in ServerBondToolsFactory.java, you dispose of
the MWHttpClient instance you created in “Instantiate MWClient, Create
Proxy, and Specify Deployable CTF Archive” on page 5-13 when it is no longer
needed.

Additionally, note the dispose() calls to clean up the factories in
BondToolsStubFactory.java and BondTools.java.

Step 5: Build the Client Code and Run the Example
Before you attempt to build and run your client code, ensure that you have
done the following:

• Added mps_client.jar ($MPS_INSTALL\client\java) to your Java
CLASSPATH and Build Path.

• Copied your deployable CTF archive to your server’s auto_deploy folder.

• Modified your server’s main_config file to point to where your MCR is
installed (using mcr-root).

• Started your server and verified it is running.

For more information, see “Java Client Prerequisites ” on page 5-4.

When you run the calculator application, you should see the following output:

5-14

Java Client

Monte Carlo Simulation for Java Client
Monte Carlo simulations are useful for modeling systems whose inputs vary
widely in range and scope. When working with such systems, it is often
difficult to make accurate predictions due to the volatile nature of the data.
In the financial industry, for example, the Monte Carlo method can be used
to create realistic data sets used for trend analysis when working with
fluctuating securities.

This example uses MATLAB Production Server to perform a Monte Carlo
simulation on a number of stocks in a portfolio, yielding Value at Risk (VaR)
and marginal value at risk (mVaR) at various confidence levels.

The values for VaR and mVaR are then plotted in a MATLAB figure.

This example shows how to create a Monte Carlo simulation that calculates
VaR and mVaR concurrently using multiprocessing capabilities of the server
and multithreading capabilities on the client.

5-15

5 Client Programming

Objectives
The Monte Carlo Simulation demonstrates the following:

• Invoking MATLAB functions concurrently with MATLAB Production
Server

• Deploying MATLAB functions with multiple outputs

• Deploying a MATLAB function with graphical output

Where To Find the Example Code
All MATLAB and client code used to test and build client examples, can be
found at $MPS_INSTALL\examples.

The example code listed in the documentation is not complete. Complete code
is available in $MPS_INSTALL\examples, where $MPS_INSTALL is the location
where you installed MATLAB Production Server.

Step 1: Write MATLAB Code
Before writing the client code, you write and deploy the Monte Carlo
simulation code in MATLAB.

Modify the values in mpsdemo_setup_mvar.m as appropriate to the investment
you want to model, or accept the default values in the program. Values include
variables such as numTimes, numSims, and time. See the code comments for
more information.

All files in this example can be found in
$MPS_INSTALL\examples\montecarlo\.

5-16

Java Client

This MATLAB code.... Provides this functionality....

MPS_MVAR_demo_setup.m Prepares theMonte Carlo input data.
Data is supplied in the associated
MAT file (mpsdemo_data_mvar.mat).

mpsdemoconfig.m Defines default configuration
parameters used by the setup code
(MPS_MVAR_demo_setup.m) such
as number of tasks, number of
simulations, and so on. One task
is equivalent to one execution of
mpsdemo_task_mvar.m.

mpsdemo_setup_mvar.m Defines values related to the mVar
calculations you want the Monte
Carlo simulation to model (for
example, number of simulations to
perform, the number of times the
simulations should be repeated, the
stock price, proportionate weight of
stock in portfolio and the confidence
level at which we should calculate
the value at risk). Calculates and
returns level of difficulty used in the
simulation.

mpsdemo_helper_getDefaults.m Gets defaults from
mpsdemoconfig.m to be used
by MPS_MVAR_demo_setup.m.

mpsdemo_helper_split_scalar.m Divides the simulation into
concurrent tasks.

mpsdemo_task_mvar.m Calculates mVar (marginal value at
risk). One task is equivalent to one
execution of mpsdemo_task_mvar.m.
You set number of tasks by passing
values to mpsdemoconfig.m (see
following procedure).

5-17

5 Client Programming

This MATLAB code.... Provides this functionality....

pTypeChecker.m Performs additional checks
and calculations for
mpsdemo_task_mvar.m.

mpsdemo_plot_mvar.m Graphs the results of the Monte
Carlo in a figure window.

Step 2: Create the Deployable CTF Archive that Runs the
Simulation with the Deployment Tool

1 From MATLAB, start the Deployment Tool by entering deploytool using
the MATLAB command prompt.

2 In the Deployment Project dialog box, create a project:

a Enter BondTools in the Name field.

b Select a location to store the project and enter it in the Location field.

c In the Type drop-down, select Generic CTF.

d Click OK.
The Deployment Tool creates your Generic CTF target project.

3 Add the following exported functions to the deployment project:

• MPS_MVAR_demo_setup.m

• mpsdemo_helper_split_scalar.m

• mpsdemo_plot_mvar.m

• mpsdemo_task_mvar.m

a On the Build tab, in the Exported Functions area, click Add files.

b In the Add Files dialog box, browse to
$MPS_INSTALL\examples\montecarlo\, select the exported functions
listed above, and click Open.

4 Add the following helper files to the deployment project:

• mpsdemo_data_mvar.mat

5-18

Java Client

• mpsdemo_help_getDefaults.m

• mpsdemo_setup_mvar.m

• mpsdemoconfig.m

• pTypeChecker.m

a On the Build tab, in the Shared Resources and Helper Files area,
click Add files/directories.

b In the Add Files dialog box, browse to
$MPS_INSTALL\examples\montecarlo and select the helper files
listed above and click Open.

5 In the Deployment Tool, click the Build icon (. When the build completes,
you will find a file named BondTools.ctf in your project distrib folder.

Step 3: Share the Deployable CTF Archive on a Server

1 Download the MATLAB Compiler Runtime, if needed, at
http://www.mathworks.com/products/compiler/mcr. See “MATLAB
Compiler Runtime (MCR) Installation” on page 4-13 for more information.

2 Create a server using mps-new.

3 If you haven’t already done so, specify the location of the MATLAB
Compiler Runtime (MCR) to the server by editing the server configuration
file, main_config and specifying a path for --mcr-root. See “Configuration
File Customization” on page 4-14 for details.

4 Start the server using mps-start and verify it is running with mps-status.

5 Copy the BondTools.ctf file to theauto-deploy folder on the server
for hosting. See “Share the Deployable CTF Archive ” on page 3-11 for
complete details.

Step 4: Configure the Server for Concurrent Processing
By default, this Monte Carlo simulation runs four instances of
mpsdemo_task_mvar.m at once. The default server configuration in
main_config starts only one worker and one thread.

5-19

http://www.mathworks.com/products/compiler/mcr

5 Client Programming

You now configure the server you have created to process this increased
workload concurrently by increasing the number of configured workers and
threads. You do this by modifying the server options --num-workers and
--num-threads in the server configuration file, main_config.

1 Navigate to the folder containing the server instance you created in “Step
3: Share the Deployable CTF Archive on a Server” on page 5-52. Open the
top-most folder, labeled with the server name.

2 In the config folder, open main_config with a text editor of your choice.

3 In main_config, find the string --num-workers and specify the value 4.
For example:

--num-workers 4

4 Find the string --num-threads and specify the value 4. For example:

--num-threads 4

5 Save your changes to main_config and close the file.

6 Restart the server to retrieve the changes you made to main_config using
mps-restart.

From the server instance folder, issue the following command:

mps-restart server_1

where server_1 is the server you created in “Step 3: Share the Deployable
CTF Archive on a Server” on page 5-52. When you restart the server, the
instance is stopped and started.

For more information about mps-restart and related server commands,
see the command reference pages in this documentation.

For more information about the server options --num-workers and
--num-threads, see “How Does a Server Manage its Work?” on page 4-2

5-20

Java Client

Step 5: Create the Java Client Code
Next, create a compatible client method interface to run the MATLAB code
you have hosted on your server.

When developing your Java code, note the following essential tasks, described
in the sections that follow. For more information about clients coding basics
and best practices, see “MATLAB® Production Server™ Client Overview” on
page 5-2, and “Java Client Coding Best Practices” on page 5-4.

This documentation references specific portions of the client code. You can find
the complete Java client code in $MPS_INSTALL\examples\montecarlo\java.

Declare Java Method Signatures Compatible with MATLAB Functions
You Deploy. In order to work with the MATLAB functions you defined in
“Step 1: Write MATLAB Code” on page 5-49, declare the corresponding Java
method signatures in the interface MVARDemo:

interface MVARDemo {

/** Loads simulation setup data into object array **/

Object[] MPS_MVAR_demo_setup(int nArgOut) throws IOException,
MATLABException;

/** Subdivides simulation into discrete tasks **/

Object[] mpsdemo_helper_split_scalar(int nArgOut, int intVal,
int numTasks) throws IOException, MATLABException;

/** Generates plot on the server, sends it back to Java client
as byte stream **/

byte[] mpsdemo_plot_mvar(Object[] VaR, Object[] mVaR,
double[] time, Object[] names) throws IOException,

MATLABException;

/** Performs simulation to calculate mVaR of portfolio **/

Object[] mpsdemo_task_mvar(int nArgOut, double splitTime,
double[][] stock, double[] weights, double[] time,

5-21

5 Client Programming

int numSims, double confLevel) throws IOException,
MATLABException;

}

Three of these signatures process multiple outputs; one does not. For
a description of how each Java method signature maps to its MATLAB
equivalent, see “Processing Outputs in the Monte Carlo Simulation” on page
5-26.

Instantiate MWClient, Create Proxy, and Specify Deployable CTF
Archive. In the main method and MPSTask classes, you perform typical
MATLAB Production Server client setup:

1 Instantiate MWClient with an instance of MWHttpClient:

public static void main(String[] args) {
// Default settings
MWClient client = null;
MVARDemo mvarClient = null;
try{

client = new MWHttpClient();
....

2 Call createProxy on the new client instance, specifying the port number
(9910) and CTF archive name (mps_montecarlo_java) the server is hosting
in the auto-deploy folder:

...

mvarClient =

client.createProxy(new URL("http://user1.dhcp.mathworks.com:9910/BondTools"),

BondTools.class);

...

Cast MATLAB Arguments to Appropriate Java Types. In the main
class, you cast arguments passed to an Object array called output from
MPS_MVAR_demo_setup using compatible MATLAB and Java types.

For example, you cast a MATLAB Double (the default data type in MATLAB)
to a Java int, because Java disallows float-point array indices:

int numTasks = ((Double) output[0]).intValue();

5-22

Java Client

Step 6: Build the Client Code and Run the Example
Before you attempt to build and run your client code, ensure that you have
done the following:

• Added mps_client.jar ($MPS_INSTALL\client\java) to your Java
CLASSPATH and Build Path.

• Copied your deployable CTF archive to your server’s auto_deploy folder.

• Modified your server’s main_config file to point to where your MCR is
installed (using mcr-root).

• Started your server and verified it is running.

For more information, see “Java Client Prerequisites ” on page 5-4.

When you run the simulation, if you use the default values provided with the
example file, a trend graph is displayed as output:

5-23

5 Client Programming

Code Multiple Outputs for Java Client
MATLAB allows users to write functions that return multiple outputs.

For example, consider this MATLAB function signature:

function [out_double_array, out_char_array] =
multipleOutputs (in1_double_array, in2_char_array)

5-24

Java Client

In the MATLAB signature: multipleOutputs has two outputs
(out_double_array and out_char_array) and two inputs (in1_double_array
and a in2_char_array, respectively) — a double array and a char array.

In order to call this function from Java, the interface in the client program
must specify the number of outputs of the function as part of the function
signature.

The number of expected output parameters in defined as type integer (int)
and is the first input parameter in the function.

In this case, the matching signature in Java is:

public Object[] multipleOutputs(int num_args, double[]
in1Double, String in2Char);

where num_args specifies number of output arguments returned by the
function. All output parameters are returned inside an array of type Object.

The following table lists “Java Client Coding Best Practices” on page 5-4 and
how the Java method signature conforms to these practices.

This Best Practice.... Is Illustrated By....

The method name exposed by the interface
must match the name of the MATLAB function
being deployed. The method and function must
have the same number of inputs and outputs.

Both the MATLAB function signature and
the Java method signature using the name
multipleOutputs. Both signatures define two
inputs and two outputs.

The method input and output types must be
convertible to and from MATLAB.

MATLAB Java interface supports direct
conversion from Java double array to MATLAB
double array and from Java string to MATLAB
char array. For more information, see
“Conversion of Java Types to MATLAB Types
” on page A-2 and “Conversion of MATLAB
Types to Java Types ” on page A-4.

5-25

5 Client Programming

Note If you are passing an integer as the first input argument through a
MATLAB function with multiple outputs defined, first wrap the integer in a
java.lang.Integer object.

Processing Outputs in the Monte Carlo Simulation
In the “Monte Carlo Simulation for Java Client” on page 5-15 example,
several types of method signatures are shown. The following sections compare
how various types of outputs are handled with the Java client, in accordance
with the guidelines described in “Code Multiple Outputs for Java Client”
on page 5-24.

Multiple Inputs and Multiple Outputs. When comparing the following
MATLAB and Java signatures, note the following:

• The Java signature accepts one more input parameter than the MATLAB
function: nArgOut, specifying number of expected output arguments.

• The first input of the Java signature (an integer) which specifies the
number of expected output arguments.

This Java signature.... Is the equivalent of this MATLAB
signature....

Object[]
mpsdemo_helper_split_scalar(int
nArgOut, int intVal, int numTasks)
throws IOException, MATLABException;

function [integerPerTask, numTasks] =
mpsdemo_helper_split_scalar(intVal,
numTasks)

Object[] mpsdemo_task_mvar(int nArgOut,
double splitTime, double[][] stock,
double[] weights, double[] time, int
numSims, double confLevel) throws
IOException, MATLABException;

function [pVaR, mmVaR] =
mpsdemo_task_mvar(numTimes, hVal,
w, t, nSim, confLevel)

Single Input and Multiple Outputs. When comparing the following
MATLAB and Java signatures, note the following:

5-26

Java Client

• The Java signature accepts a single integer input specifying number of
expected output arguments (nArgOut).

• Java Object arrays represent cell arrays inside of MATLAB, as described
in “Data Conversion with Java and MATLAB Types” on page 5-36 and the
table “Conversion of MATLAB Types to Java Types ” on page A-4.

This Java signature.... Is the equivalent of this MATLAB
signature....

Object[] MPS_MVAR_demo_setup(int
nArgOut) throws IOException,
MATLABException;

function [numTasks, numSims, numTimes,
stock, names, weights, time, confLevel]
= MPS_MVAR_demo_setup()

Single Output Only. When comparing the following MATLAB and Java
signatures, note the following:

• In contrast to the preceding signatures, this method call returns only one
output of type byte array. Therefore, the signature does not need to specify
the expected number of output arguments as the first input parameter.

• Java Object arrays represent cell arrays inside of MATLAB, as described
in “Data Conversion with Java and MATLAB Types” on page 5-36 and the
table “Conversion of MATLAB Types to Java Types ” on page A-4.

This Java signature.... Is the equivalent of this MATLAB
signature....

byte[] mpsdemo_plot_mvar(Object[]
VaR, Object[] mVaR, double[] time,
Object[] names) throws IOException,
MATLABException;

function image_data =
mpsdemo_plot_mvar(VaR, mVaR, time,
names)

Code Variable-Length Inputs and Outputs for Java
Client
MATLAB supports functions with both variable number of input arguments
(varargin) and variable number of output arguments (varargout).

MATLAB Production Server Java client supports the ability to work with
variable-length inputs (varargin) and outputs (varargout). varargin

5-27

5 Client Programming

supports one or more of any data type supported by MATLAB. See the
MATLAB Function Reference for complete information on varargin and
varargout.

For example, consider this MATLAB function:

function varargout = vararginout(double1, char2, varargin)

In this example, the first input is type double (double1), the second input
type is a char (char2), and the third input is a variable-length array that can
contain zero, one or more input parameters of valid MATLAB data types.

The corresponding client method signature must include the same number of
output arguments as the first input to the Java method.

Therefore, the Java method signature supported by MATLAB Production
Server Java client, for the above MATLAB function, is as follows:

public Object[] vararginout(int nargout, double in1, String in2, Object... vararg);

In the vararginout method signature, equivalent Java types are specified for
the two inputs (in1 and in2).

The variable number of input parameters is specified in Java as Object...
vararg.

The variable number of output parameters is specified in Java as return
type Object[].

The following table lists “Java Client Coding Best Practices” on page 5-4 and
how the Java method signature conforms to these practices.

5-28

Java Client

This Best Practice.... Is Illustrated By....

The method name exposed by the interface
must match the name of the MATLAB function
being deployed. The method and function must
have the same number of inputs and outputs.

Both the MATLAB function signature and
the Java method signature using the name
multipleOutputs. Both signatures define two
inputs and two outputs.

The method input and output types must be
convertible to and from MATLAB.

MATLAB Java interface supports direct
conversion from Java double array to MATLAB
double array and from Java string to MATLAB
char array. For more information, see
“Conversion of Java Types to MATLAB Types
” on page A-2 and “Conversion of MATLAB
Types to Java Types ” on page A-4.

Marshal MATLAB Structures (Structs) in Java
Structures (or structs) are MATLAB arrays with elements accessed by textual
field designators.

Structs consist of data containers, called fields. Each field stores an array of
some MATLAB data type. Every field has a unique name.

A field in a structure can have a value compatible with any MATLAB data
type, including a cell array or another structure.

In MATLAB, a structure is created as follows:

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

This code creates a scalar structure (S) with three fields:

S =
name: 'Ed Plum'
score: 83
grade: 'B+'

A multidimensional structure array can be created by inserting additional
elements:

5-29

5 Client Programming

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

In this case, a structure array of dimensions (1,2) is created. Structs with
additional dimensions are also supported.

Since Java does not natively support MATLAB structures, marshaling structs
between the server and client involves additional coding.

Marshaling a Struct Between Client and Server
MATLAB structures are ordered lists of name-value pairs. You represent
them in Java with a class using fields consisting of the same case-sensitive
names.

The Java class must also have public get and set methods defined for each
field (as shown in the Student class, above). Whether or not the class needs
bothget and set methods depends on whether it is being used as input or
output, or both.

Following is a simple example of how a MATLAB structure can be marshaled
between Java client and server.

In this example, MATLAB function sortstudents takes in an array of
structures (see “Marshal MATLAB Structures (Structs) in Java” on page
5-29 for details).

Each element in the struct array represents different information about a
student. sortstudents sorts the input array in ascending order by score
of each student, as follows:

function sorted = sortstudents(unsorted)

% Receive a vector of students as input

% Get scores of all the students

scores = {unsorted.score};

% Convert the cell array containing scores into a numeric array or doubles

scores = cell2mat(scores);

% Sort the scores array

[s i] = sort(scores);

% Sort the students array based on the sorted scores array

5-30

Java Client

sorted = unsorted(i);

Note Even though this example only uses the scores field of the input
structure, you can also work with name and grade fields in a similar manner.

If you compile sortstudents into a deployable CTF archive using the
Deployment Tool (see “Create a Deployable CTF Archive from MATLAB
Code” on page 3-6 for details) and make it available on the server at
http://localhost:9910/scoresorter for access by the Java Client (see
“Share the Deployable CTF Archive ” on page 3-11), you next define a Java
class (Student) to represent the MATLAB structure, as follows:

Java Class Student

public class Student{

private String name;
private int score;
private String grade;

public Student(){
}

public Student(String name, int score, String grade){
this.name = name;
this.score = score;
this.grade = grade;

}

public String getName(){
return name;

}

public void setName(String name){
this.name = name;

}

public int getScore(){

5-31

5 Client Programming

return score;
}

public void setScore(int score){
this.score = score;

}

public String getGrade(){
return grade;

}

public void setGrade(String grade){
this.grade = grade;

}

public String toString(){
return "Student:\n\tname : " + name +

"\n\tscore : " + score + "\n\tgrade : " + grade;
}

}

Note Note that this example uses the toString method for marshaling
convenience. It is not required.

Next define the Java interface StudentSorter, which calls method
sortstudents and uses the Student class (defined above).

Java Interface StudentSorter

interface StudentSorter {
Student[] sortstudents(Student[] students)

throws IOException, MATLABException;
}

Finally, you write the Java application (MPSClientExample) for the client:

5-32

Java Client

1 Create MWHttpClient and associated proxy (using createProxy) as shown
in “Create a Java Application That Calls the Deployed Function” on page
2-10.

2 Create an unsorted student struct in Java that mimics the MATLAB struct
in naming, number of inputs and outputs, and type validity in MATLAB.
See “Java Client Coding Best Practices” on page 5-4 for more information.

3 Pass and display the unsorted student list using System.out.println.

4 Sort the student array and display it.

Java MPSClientExample Class

import java.net.URL;

import java.io.IOException;

import com.mathworks.MPS.client.MWClient;

import com.mathworks.MPS.client.MWHttpClient;

import com.mathworks.MPS.client.MATLABException;

interface StudentSorter {

Student[] sortstudents(Student[] students)

throws IOException, MATLABException;

}

public class MPSClientExample{

public static void main(String[] args){

MWClient client = new MWHttpClient();

try{

StudentSorter s =

client.createProxy(new URL("http://localhost:9910/scoresorter"),

StudentSorter.class);

Student[] students =

new Student[]{new Student("Toni Miller", 90, "A"),

new Student("Ed Plum", 80, "B+"),

new Student("Mark Jones", 85, "A-")};

Student[] sorted = s.sortstudents(students);

System.out.println("Student list sorted in ");

System.out.println("the ascending order of scores :");

5-33

5 Client Programming

for(Student s:sorted){

System.out.println(s);

}

}catch(IOException ex){

System.out.println(ex);

}catch(MATLABException ex){

System.out.println(ex);

}finally{

client.close();

}

}

}

Defining MATLAB Structures Only Used as Inputs. When student is
passed as an input to method sortstudents, only the get methods for its
fields are used by the data marshaling algorithm.

As a result, if a Java class is defined for a MATLAB structure that is only
used as an input value, the set methods are not required. This version of the
Student class only represents input values :

Java Class Student with Struct as Input

public class Student{

private String name;
private int score;
private String grade;

public Student(String name, int score, String grade){
this.name = name;
this.score = score;
this.grade = grade;

}

public String getName(){
return name;

}

public int getScore(){

5-34

Java Client

return score;
}

public String getGrade(){
return grade;

}
}

Defining MATLAB Structures Only Used as an Output. When the
Student class is used as an output only, the data marshaling algorithm needs
to create new instances of th class using the structure received from MATLAB.

This can be achieved using the set methods or @ConstructorProperties
annotation provided by Java. get methods are not required for a Java class
when defining output-only MATLAB structures.

An output-only Student class using set methods follows:

Java Class Student with Struct as Output

public class Student{

private String name;
private int score;
private String grade;

public void setName(String name){
this.name = name;

}

public void setScore(int score){
this.score = score;

}

public void setGrade(String grade){
this.grade = grade;

}
}

An output-only Student class using @ConstructorProperties follows:

5-35

5 Client Programming

Defining MATLAB structures for output using @ConstructorProperties
annotation

public class Student{

private String name;
private int score;
private String grade;

@ConstructorProperties({"name","score","grade"})
public Student(String n, int s, String g){

this.name = n;
this.score = s;
this.grade = g;

}
}

Note If both set methods and @ConstructorProperties annotation are
provided, set methods take precedence over @ConstructorProperties
annotation.

Defining MATLAB Structures Used as Both Inputs and Outputs. If the
Student class is used as both an input and output, you need to provide get
methods to perform marshaling to MATLAB. For marshaling from MATLAB,
use set methods or @ConstructorProperties annotation.

Data Conversion with Java and MATLAB Types
When the Java client invokes a MATLAB function through a request and
receives a result in the response, data conversion takes place between
MATLAB types and Java data types.

Working with MATLAB Data Types
There are many data types, or classes, that you can work with in MATLAB.
Each of these classes is in the form of a matrix or array. You can build
matrices and arrays of floating-point and integer data, characters and strings,
and logical true and false states. Structures and cell arrays provide a way to
store dissimilar types of data in the same array.

5-36

Java Client

All of the fundamental MATLAB classes are circled in the diagram
Fundamental MATLAB Data Classes on page 5-37.

The Java client follows Java-MATLAB-Interface (JMI) rules for data
marshaling. It expands those rules for scalar Java boxed types, allowing
auto-boxing and un-boxing, which JMI does not support.

Note Function Handles are not supported by MATLAB Production Server.

Fundamental MATLAB Data Classes

Detailed descriptions of expected conversion results for Java to MATLAB
types and MATLAB types to Java, can be found in Appendix A, “Data
Conversion Rules” .

Dimensionality in Java and MATLAB Data Types
In MATLAB, dimensionality is an attribute of the fundamental types and
does not add to the number of types as it does in Java.

5-37

5 Client Programming

In Java, double, double[] and double[][][] are three different data types.
In MATLAB, there is only a double data type and possibly a scalar instance,
a vector instance, or a multi-dimensional instance.

Java Signature Value Returned from MATLAB

double[][][] foo() ones(1,2,3)

Dimension Coercion. How you define your MATLAB function and
corresponding Java method signature determines if your output data will be
coerced, using padding or truncation.

This coercion by is performed automatically for you. This section describes
the rules followed for padding and truncation.

Padding

When a Java method’s return type has more dimensions than MATLAB’s,
MATLAB’s dimensions are be padded with ones (1s) to match the required
number of output dimensions in Java.

You, as a developer, do not have to do anything to pad dimensions.

The following tables provide examples of how padding is performed for you:

How MATLAB Pads Your Java Method Return Type

When Dimensions
in MATLAB are:

And Dimensions in
Java are:

This Type in Java: Returns this Type in
MATLAB:

size(a) is[2,3] Array will be returned
as size 2,3,1,1

double [][][][]
foo()

function a = foo a
= ones(2,3);

Padding Dimensions in MATLAB and Java Data Conversion

MATLAB Array Dimensions Declared Output Java Type Output Java Dimensions

2 x 3 double[][][] 2 x 3 x 1

2 x 3 double[][][][] 2 x 3 x 1 x 1

5-38

Java Client

Truncation

When a Java method’s return type has fewer dimensions than MATLAB’s,
MATLAB’s dimensions are truncated to match the required number of output
dimensions in Java. This is only possible when extra dimensions for MATLAB
array have values of ones (1s) only.

To compute appropriate number of dimensions in Java, excess ones are
truncated, in this order:

1 From the end of the array

2 From the array’s beginning

3 From the middle of the array (scanning front-to-back).

You, as a developer, do not have to do anything to truncate dimensions.

The following tables provide examples of how truncation is performed for you:

How MATLAB Truncates Your Java Method Return Type

When Dimensions
in MATLAB are:

And Dimensions in
Java are:

This Type in Java: Returns this Type in
MATLAB

size(a) is
[1,2,1,1,3,1]

Array will be returned
as size 2,3

double [][] foo() function a
= foo a =
ones(1,2,1,1,3,1);

Following are some examples of dimension shortening using the double
numeric type:

Truncating Dimensions in MATLAB and Java Data Conversion

MATLAB Array Dimensions Declared Output Java Type Output Java Dimensions

1 x 1 double 0

2 x 1 double[] 2

1 x 2 double[] 2

5-39

5 Client Programming

Truncating Dimensions in MATLAB and Java Data Conversion (Continued)

MATLAB Array Dimensions Declared Output Java Type Output Java Dimensions

2 x 3 x 1 double[][] 2 x 3

1 x 3 x 4 double[][] 3 x 4

1 x 3 x 4 x 1 x 1 double[][][] 1 x 3 x 4

1 x 3 x 1 x 1 x 2 x 1 x 4
x 1

double[][][][] 3 x 2 x 1 x 4

Empty (Zero) Dimensions
Passing arrays of zero (0) dimensions (sometimes called empties) results in an
empty matrix from MATLAB.

Java Signature Value Returned from MATLAB

double[] foo() []

Passing Java Empties to MATLAB

When a null is passed from Java to MATLAB, it will always be marshaled
into [] in MATLAB as a zero by zero (0 x 0) double. This is independent of
the declared input type used in Java. For example, all the following methods
can accept null as an input value:

void foo(String input);
void foo(double[] input);
void foo(double[][] input);
void foo(Double input);

And in MATLAB, null will be received as:

[] i.e. 0x0 double

Passing MATLAB Empties to Java

An empty array in MATLAB has at least one zero (0) assigned in at least one
dimension. For function a = foo, for example, any one of the following
values is acceptable:

5-40

Java Client

a = [];
a = ones(0);
a = ones(0,0);
a = ones(1,2,0,3);

Empty MATLAB data will be returned to Java as null for all the above cases.

For example, in Java, the following signatures return null when a MATLAB
function returns an empty array:

double[] foo();
double[][] foo();
Double foo();

However, when MATLAB returns an empty array and the return type in Java
is a scalar primitive (as with double foo();, for example) an exception
is thrown . :

IllegalArgumentException
("An empty MATLAB array cannot be represented by a

primitive scalar Java type")

Boxed Types
Boxed Types are mechanisms used to wrap opaque C structures.

Java client will perform primitive to boxed type conversion if boxed types are
used as return types in the Java method signature.

Java Signature Value Returned from MATLAB

Double foo() 1.0

For example, the following method signatures work interchangeably:

double[] foo(); Double[] foo();
double[][][] foo(); Double[][][] foo();

5-41

5 Client Programming

Signed and Unsigned Types in Java and MATLAB Data Types
Numeric classes in MATLAB include signed and unsigned integers. Java
does not have unsigned types.

5-42

.NET Client

.NET Client

In this section...

“.NET Client Coding Best Practices” on page 5-43

“Preparing Your Microsoft® Visual Studio® Environment” on page 5-47

“Monte Carlo Simulation for .NET Client” on page 5-48

“Code Multiple Outputs for C# .NET Client” on page 5-57

“Code Variable-Length Inputs and Outputs for .NET Client” on page 5-61

“Marshal MATLAB Structures (structs) in C#” on page 5-65

“Data Conversion with C# and MATLAB Types” on page 5-74

.NET Client Coding Best Practices
When writing .NET interfaces for invoking MATLAB code, keep the following
in mind:

• The method name exposed by the interface must match the name of the
MATLAB function being deployed. The method must have the same
number of inputs and outputs as the MATLAB function.

• The method input and output types must be convertible to and from
MATLAB.

• The number of inputs and outputs must be compatible with those supported
by MATLAB.

• If you are working with MATLAB structures, remember that the field
names are case-sensitive and must match in both the MATLAB function
and corresponding user-defined .NET type.

• The name of the interface can be any valid .NET name.

• Your code should support exception handling.

.NET Client Prerequisites
Do the following to prepare your MATLAB Production Server .NET
development environment.

5-43

5 Client Programming

1 Install Microsoft Visual Studio. See
http://www.mathworks.com/support/compilers/current_release/ for an
up-to-date listing of supported software, including IDEs and Microsoft
.NET Frameworks.

2 You should have one generic CTF archive in your server’s auto_deploy
folder for each application interface you plan to create on the client.

For information about creating a CTF archive with the Deployment Tool,
see “Create a Deployable CTF Archive from MATLAB Code” on page 3-6.

3 Your server’s main_config file should be customized to point to where your
MCR instance is installed (using mcr-root).

4 Your server should be running in order to run to the following client
example.

Handling Exceptions
You should declare exceptions for the following errors:

For this Error Use this Method To Declare this Exception

MATLAB errors MATLABException MathWorks.MATLAB.ProductionServer.Client.
MWClient.MATLABException

Transport errors
occurring during
client-server
communication

WebException System.Net.WebException

Managing System Resources
Call the close method only when the MWHttpClient instance is no longer
needed, as in the example interface above:

finally
{

client.Close();
}

5-44

http://www.mathworks.com/support/compilers/current_release/

.NET Client

A single .NET client connects to one or more servers available at different
URLs. Even though users sometimes create multiple instances of
MWHttpClient, you can use a single instance to communicate with more
than one server. The server and client have a 1:1 relationship at any point
in time (for example, the server can not communicate with multiple clients
simultaneously).

Proxy objects, created using an instance of MWHttpClient, communicate with
the server until the close method of that instance is invoked. Therefore, it is
important to call the close method only when the MWHttpClient instance is
no longer needed, in order to reclaim system resources.

Using IDisposable to Free Client Instances. Call the Dispose method (an
implementation of IDisposable) on unneeded client instances. Doing so
ensures that all resources not already managed by the Garbage Collector
(such as an instance of MWClient) are freed.

You call Dispose in either of two ways:

• Call Dispose Directly— Call the method directly on the object you want
to free as follows, when the instance is no longer needed.:

client.Dispose();

For an example of calling Dispose directly, see “Call Dispose to Free
System Resources” on page 5-55 in the “Monte Carlo Simulation for .NET
Client” on page 5-48 example.

• Tie IDispose to the client instance with the using keyword—When
you instantiate MWHttpClient, you can attach Dispose for the lifetime
of the client. If you do this, you don’t have to explicitly call Dispose on
the instance—the garbage collector handles cleanup as it would any other
managed resource.

If you implement IDisposable in this manner, do so when you call
createProxy, as in the following code snippet:

using (MWClient client = new MWHttpClient(new TestConfigDispose()))
{

DisposeTest proxy = client.CreateProxy(new
Uri("http://localhost:" + server.Port));

5-45

5 Client Programming

In the MSDN documentation on IDisposable.Dispose, using a Finalizers
is also mentioned as an alternative to the using keyword. This is not
recommended for freeing instances of MWClient, and cannot be relied on to
free resources in every case.

Note Calling Dispose on instances of MWClient closes all open sockets bound
to the instance.

Configure Client Timeout Value for Connection with a Server
To prevent client and server deadlocks and to ensure client stability, consider
setting a timeout parameter when the client is connected with the server
and the server becomes unresponsive.

To set a timeout parameter in milliseconds, implement interface
MWHttpClientConfig in your client code. Use the overloaded constructor of
MWHttpClient, which takes in an instance of MWHttpClientConfig.

For example, to set the client to timeout after no response from the server
after 3 minutes (180000 milliseconds), add the following to your client code
(as shown in the Magic Square example in “Create a .NET Application That
Calls the Deployed Function” on page 2-14).

class CustomConfig : MWHttpClientConfig
{

public int TimeoutMilliSeconds
{

get { return 180000; }
}

}

Note The default timeout parameter is 120000 milliseconds (2 minutes).

5-46

http://msdn.microsoft.com/en-us/library/system.idisposable.dispose.aspx

.NET Client

Data Conversion for .NET and MATLAB Types
For information regarding supported MATLAB types for client and server
marshaling, see “Unsupported MATLAB Data Types for Client and Server
Marshaling” on page 5-3

Where to Find the Ndoc
The API doc for the .NET client is installed in $MPS_INSTALL/client.

Preparing Your Microsoft Visual Studio Environment
Before you begin writing the .NET application interface, do the following to
prepare your development environment.

Creating a Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.

2 Click File > New > Project.

3 In the New Project dialog, select the project type and template you want to
use. For example, if you want to create a C# Console Application, select
Windows in the Visual C# branch of the Project Type pane, and select
the C# Console Application template from the Templates pane.

4 Type the name of the project in the Name field (MainApp, for example).

5 Click OK. Your MainApp source shell is created.

Creating a Reference to the Client Run-Time Library
Create a reference in your MainApp code to the MATLAB Production Server
client run-time library. In Microsoft Visual Studio, perform the following
steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on
the right side), select the name of your project, MainApp, highlighting it.

2 Right-click MainApp and select Add Reference.

5-47

5 Client Programming

3 In the Add Reference dialog box, select the Browse
tab. Browse to the MATLAB Production Server client
runtime, installed at $MPS_INSTALL\client\dotnet. Select
Mathworks.MATLAB.ProductionServer.Client.dll.

4 Click OK. Mathworks.MATLAB.ProductionServer.Client.dll is now
referenced by your Microsoft Visual Studio project.

Monte Carlo Simulation for .NET Client
Monte Carlo simulations are useful for modeling systems whose inputs vary
widely in range and scope. When working with such systems, it is often
difficult to make accurate predictions due to the volatile nature of the data.
In the financial industry, for example, the Monte Carlo method can be used
to create realistic data sets used for trend analysis when working with
fluctuating securities.

This example uses MATLAB Production Server to perform a Monte Carlo
simulation on a number of stocks in a portfolio, yielding Value at Risk (VaR)
and marginal value at risk (mVaR) at various confidence levels.

The values for VaR and mVaR are then plotted in a MATLAB figure.

This example shows how to create a Monte Carlo simulation that calculates
VaR and mVaR concurrently using multiprocessing capabilities of the server
and multithreading capabilities on the client.

Objectives
The Monte Carlo Simulation demonstrates the following:

• Invoking MATLAB functions concurrently with MATLAB Production
Server

• Deploying MATLAB functions with multiple outputs

• Deploying a MATLAB function with graphical output

Where To Find the Example Code
All MATLAB and client code used to test and build client examples, can be
found at $MPS_INSTALL\examples.

5-48

.NET Client

The example code listed in the documentation is not complete. Complete code
is available in $MPS_INSTALL\examples, where $MPS_INSTALL is the location
where you installed MATLAB Production Server.

Step 1: Write MATLAB Code
Before writing the client code, you write and deploy the Monte Carlo
simulation code in MATLAB.

Modify the values in mpsdemo_setup_mvar.m as appropriate to the investment
you want to model, or accept the default values in the program. Values include
variables such as numTimes, numSims, and time. See the code comments for
more information.

All files in this example can be found in
$MPS_INSTALL\examples\montecarlo\.

This MATLAB code.... Provides this functionality....

MPS_MVAR_demo_setup.m Prepares theMonte Carlo input data.
Data is supplied in the associated
MAT file (mpsdemo_data_mvar.mat).

mpsdemoconfig.m Defines default configuration
parameters used by the setup code
(MPS_MVAR_demo_setup.m) such
as number of tasks, number of
simulations, and so on. One task
is equivalent to one execution of
mpsdemo_task_mvar.m.

5-49

5 Client Programming

This MATLAB code.... Provides this functionality....

mpsdemo_setup_mvar.m Defines values related to the mVar
calculations you want the Monte
Carlo simulation to model (for
example, number of simulations to
perform, the number of times the
simulations should be repeated, the
stock price, proportionate weight of
stock in portfolio and the confidence
level at which we should calculate
the value at risk). Calculates and
returns level of difficulty used in the
simulation.

mpsdemo_helper_getDefaults.m Gets defaults from
mpsdemoconfig.m to be used
by MPS_MVAR_demo_setup.m.

mpsdemo_helper_split_scalar.m Divides the simulation into
concurrent tasks.

mpsdemo_task_mvar.m Calculates mVar (marginal value at
risk). One task is equivalent to one
execution of mpsdemo_task_mvar.m.
You set number of tasks by passing
values to mpsdemoconfig.m (see
following procedure).

pTypeChecker.m Performs additional checks
and calculations for
mpsdemo_task_mvar.m.

mpsdemo_plot_mvar.m Graphs the results of the Monte
Carlo in a figure window.

Step 2: Create the Deployable CTF Archive that Runs the
Simulation with the Deployment Tool

1 From MATLAB, start the Deployment Tool by entering deploytool using
the MATLAB command prompt.

5-50

.NET Client

2 In the Deployment Project dialog box, create a project:

a Enter BondTools in the Name field.

b Select a location to store the project and enter it in the Location field.

c In the Type drop-down, select Generic CTF.

d Click OK.
The Deployment Tool creates your Generic CTF target project.

3 Add the following exported functions to the deployment project:

• MPS_MVAR_demo_setup.m

• mpsdemo_helper_split_scalar.m

• mpsdemo_plot_mvar.m

• mpsdemo_task_mvar.m

a On the Build tab, in the Exported Functions area, click Add files.

b In the Add Files dialog box, browse to
$MPS_INSTALL\examples\montecarlo\, select the exported functions
listed above, and click Open.

4 Add the following helper files to the deployment project:

• mpsdemo_data_mvar.mat

• mpsdemo_help_getDefaults.m

• mpsdemo_setup_mvar.m

• mpsdemoconfig.m

• pTypeChecker.m

a On the Build tab, in the Shared Resources and Helper Files area,
click Add files/directories.

b In the Add Files dialog box, browse to
$MPS_INSTALL\examples\montecarlo and select the helper files
listed above and click Open.

5 In the Deployment Tool, click the Build icon (. When the build completes,
you will find a file named BondTools.ctf in your project distrib folder.

5-51

5 Client Programming

Step 3: Share the Deployable CTF Archive on a Server

1 Download the MATLAB Compiler Runtime, if needed, at
http://www.mathworks.com/products/compiler/mcr. See “MATLAB
Compiler Runtime (MCR) Installation” on page 4-13 for more information.

2 Create a server using mps-new.

3 If you haven’t already done so, specify the location of the MATLAB
Compiler Runtime (MCR) to the server by editing the server configuration
file, main_config and specifying a path for --mcr-root. See “Configuration
File Customization” on page 4-14 for details.

4 Start the server using mps-start and verify it is running with mps-status.

5 Copy the BondTools.ctf file to theauto-deploy folder on the server
for hosting. See “Share the Deployable CTF Archive ” on page 3-11 for
complete details.

Step 4: Configure the Server for Concurrent Processing
By default, this Monte Carlo simulation runs four instances of
mpsdemo_task_mvar.m at once. The default server configuration in
main_config starts only one worker and one thread.

You now configure the server you have created to process this increased
workload concurrently by increasing the number of configured workers and
threads. You do this by modifying the server options --num-workers and
--num-threads in the server configuration file, main_config.

1 Navigate to the folder containing the server instance you created in “Step
3: Share the Deployable CTF Archive on a Server” on page 5-52. Open the
top-most folder, labeled with the server name.

2 In the config folder, open main_config with a text editor of your choice.

3 In main_config, find the string --num-workers and specify the value 4.
For example:

--num-workers 4

4 Find the string --num-threads and specify the value 4. For example:

5-52

http://www.mathworks.com/products/compiler/mcr

.NET Client

--num-threads 4

5 Save your changes to main_config and close the file.

6 Restart the server to retrieve the changes you made to main_config using
mps-restart.

From the server instance folder, issue the following command:

mps-restart server_1

where server_1 is the server you created in “Step 3: Share the Deployable
CTF Archive on a Server” on page 5-52. When you restart the server, the
instance is stopped and started.

For more information about mps-restart and related server commands,
see the command reference pages in this documentation.

For more information about the server options --num-workers and
--num-threads, see “How Does a Server Manage its Work?” on page 4-2

Step 5: Create the C# Client Code
Next, create a compatible client method interface to run the MATLAB code
you have hosted on your server.

When developing your C# code, note the following essential tasks, described
in the sections that follow. For more information about clients coding basics
and best practices, see “MATLAB® Production Server™ Client Overview” on
page 5-2, and “.NET Client Coding Best Practices” on page 5-43.

This documentation references specific portions of the client code. You can
find the complete C# client code in $MPS_INSTALL\examples\montecarlo.

Declare C# Method Signatures Compatible with MATLAB Functions
You Deploy. In order to work with the MATLAB functions you defined in
“Step 1: Write MATLAB Code” on page 5-49, declare the corresponding C#
method signatures in the interface MVaRDemo in marginalvalueatrisk.cs:

public interface MVaRDemo

{

5-53

5 Client Programming

/** Loads simulation data - computes the difficulty and

returns it as part of setup **/

void MPS_MVAR_demo_setup(out double numTasks,

out double numSims, out double numTimes,

out double[,] stock, out object[] names,

out double[] weights, out double[] time,

out double confLevel);

/** Subdivides simulation into discrete tasks **/

void mpsdemo_helper_split_scalar(out double[] splitTimes,

out int numTasksOut, int intVal, int numTasks);

/** Generates plot on the server, sends it back to

.NET client as sbyte stream **/

sbyte[] mpsdemo_plot_mvar(object[] VaR, object[] mVaR,

double[] time, object[] names);

/** Performs simulation to calculate mVaR of portfolio **/

void mpsdemo_task_mvar(out object[] VarVals, out object[] mVarVals,

double splitTime, double[,] stock, double[] weights,

double[] time, int numSims, double confLevel); }

Three of these signatures process multiple outputs; one does not. For a
description of how each C# method signature maps to its MATLAB equivalent,
see “Processing Multiple Outputs in the Monte Carlo Simulation” on page
5-59.

Instantiate MWClient, Create Proxy, and Specify Deployable CTF
Archive. In the main method and MPSTask classes, you perform typical
MATLAB Production Server client setup:

1 Instantiate MWClient with an instance of MWHttpClient:

....
MWClient client = null;

MVaRDemo mvarClient = null;

5-54

.NET Client

try
{

client = new MWHttpClient();
....

2 Call createProxy on the new client instance, specifying the port number
(9910) and CTF archive name (BondTools) the server is hosting in the
auto-deploy folder.

The .NET code references the server and port through a constructor named
SERVER:

private const string SERVER = @"http://user-01.dhcp.mathworks.com:9930/BondTools";

try

{

client = new MWHttpClient();

mvarClient = client.CreateProxy(new Uri(SERVER));...

Call Dispose to Free System Resources. The Dispose method is called in
both CallMPS and Main, to ensure system resources are freed.

For more about calling Dispose, see “Using IDisposable to Free Client
Instances” on page 5-45.

finally
{

client.Dispose();
}

Step 6: Build the Client Code and Run the Example
Before you attempt to build and run your client code, ensure that you have
done the following:

• Added Mathworks.MATLAB.ProductionServer.Client.dll
($MPS_INSTALL\client\net) to your Microsoft Visual Studio project
references.

• Copied your deployable CTF archive to your server’s auto_deploy folder.

5-55

5 Client Programming

• Modified your server’s main_config file to point to where your MCR is
installed (using mcr-root).

• Started your server and verified it is running.

For more information, see “.NET Client Prerequisites” on page 5-43.

When you run the simulation, if you use the default values provided with the
example file, a trend graph is displayed as output:

5-56

.NET Client

Code Multiple Outputs for C# .NET Client
MATLAB allows users to write functions with multiple outputs. In order to
work with multiple outputs in C#, use the out keyword.

The following MATLAB code takes multiple inputs (i1, i2, i3) and returns
multiple outputs (o1, o2, o3), after performing some checks and calculation.

In this example, the first input and output are of type double, the second
input and output are of type int, and the third inputs and output are of type
string.

To deploy this function with MATLAB Production Server, you need to write
a corresponding method interface in C#, using the out keyword. The out
keyword causes arguments to be passed by reference. When using out, both
the interface method definition and the calling method must explicitly specify
the out keyword.

The output argument data types listed in your C# interface (referenced
with the out keyword) must match the output argument data types
listed in your MATLAB signature exactly. Therefore, in the C# interface
(MultipleOutputsExample) and method (TryMultipleOutputs) code snippets
listed here, multiple outputs are listed (with matching specified data types) in
the same order as listed in your MATLAB function.

MATLAB Function multipleoutputs

function [o1 o2 o3] = multipleoutputs(i1, i2, i3)
o1 = modifyinput(i1);
o2 = modifyinput(i2);
o3 = modifyinput(i3);

function out = modifyinput(in)
if(isnumeric(in))

out = in*2;
elseif(ischar(in))

out = upper(in);
else

out = in;
end

5-57

5 Client Programming

C# Interface MultipleOutputsExample

public interface MultipleOutputsExample

{

void multipleoutputs(out double o1, out int o2, out string o3,

double i1, int i2, string i3);

}

C# Method TryMultipleOutputs

public static void TryMultipleOutputs()

{

MWClient client = new MWHttpClient();

MultipleOutputsExample mpsexample =

client.CreateProxy<MultipleOutputsExample>(new Uri("http://localhost:9910/mpsexample"));

double o1;

int o2;

string o3;

mpsexample.multipleoutputs(out o1, out o2, out o3, 1.2, 10, "hello");

output1 = mpsexample.multipleoutputs;

Console.ReadLine();

}

After creating a new instance of MWHttpClient and a client proxy, variables
and the calling method, multipleoutputs, are declared.

In the multipleoutputs method, values matching each declared types are
passed for output (1.2 for double, 10 for int, and hello for string) to
output1.

The following table lists “.NET Client Coding Best Practices” on page 5-43
and how the C# interface method signature conforms to these practices.

5-58

.NET Client

This Best Practice.... Is Illustrated By....

The method name exposed by the interface
must match the name of the MATLAB function
being deployed. The method and function must
have the same number of inputs and outputs.

Both the MATLAB function signature and the
C# interface method signature use the name
multipleOutputs. Both MATLAB and C# code
are processing three inputs and three outputs.

The method input and output types must be
convertible to and from MATLAB.

MATLAB .NET interface supports direct
conversion from Java double array to MATLAB
double array and from Java string to MATLAB
char array. For more information, see
“Conversion of Java Types to MATLAB Types
” on page A-2 and “Conversion of MATLAB
Types to Java Types ” on page A-4.

Processing Multiple Outputs in the Monte Carlo Simulation
In the “Monte Carlo Simulation for .NET Client” on page 5-48 example,
several types of method signatures are shown. The following sections compare
how various types of outputs are handled with the .NET client, in C#, in
accordance with the guidelines described in “Code Multiple Outputs for C#
.NET Client” on page 5-57.

Multiple and SIngle Inputs with Multiple Outputs. When comparing the
following MATLAB and C# signatures, note the following:

• The C# signature explicitly specifies the out keyword to designate an
output.

• Multiple outputs listed in the C# signature match the outputs in
the MATLAB signature exactly. For example, in the C# signature
mpsdemo_helper_split_scalar, splitTimes corresponds to the MATLAB
argument integerPerTask. numTasksOut corresponds to numTasks. Note
that these corresponding outputs are listed in the same order in both
signatures. Notice the data types in the C# signature match exactly to the
MATLAB data types and are explicitly specified in the C# code.

5-59

5 Client Programming

This C# signature.... Is the equivalent of this MATLAB
signature....

void mpsdemo_helper_split_scalar(out
double[] splitTimes, out int
numTasksOut, int intVal, int numTasks);

function [integerPerTask, numTasks] =
mpsdemo_helper_split_scalar(intVal,
numTasks)

void mpsdemo_task_mvar(out object[]
VarVals, out object[] mVarVals, double
splitTime, double[,] stock, double[]
weights, double[] time, int numSims,
double confLevel);

function [pVaR, mmVaR] =
mpsdemo_task_mvar(numTimes, hVal,
w, t, nSim, confLevel)

void MPS_MVAR_demo_setup(out double
numTasks, out double numSims, out
double numTimes, out double[,] stock,
out object[] names, out double[]
weights, out double[] time, out double
confLevel);

function [numTasks, numSims, numTimes,
stock, names, weights, time, confLevel]
= MPS_MVAR_demo_setup()

Single Output Only. When comparing the following MATLAB and C#
signatures, note the following:

• In contrast to the preceding signatures, this method call returns only one
output of type sbyte array. Therefore, the signature does not need to
specify the out keyword to denote multiple outputs.

• Object arrays represent cell arrays inside of MATLAB, as described in
“Data Conversion with C# and MATLAB Types” on page 5-74 and the table
“Conversion Between MATLAB Types and C# Types” on page A-6.

This C# signature.... Is the equivalent of this MATLAB
signature....

sbyte[] mpsdemo_plot_mvar(object[] VaR,
object[] mVaR, double[] time, object[]
names);

function image_data =
mpsdemo_plot_mvar(VaR, mVaR, time,
names)

5-60

.NET Client

Code Variable-Length Inputs and Outputs for .NET
Client
MATLAB Production Server .NET client supports MATLAB’s ability to
work with variable-length inputs. See the MATLAB Function Reference for
complete information on varargin and varargout.

Using varargin with .NET Client
MATLAB variable input arguments (varargin) are passed using the params
keyword.

For example, consider the MATLAB function varargintest, which takes a
variable-length input (varargin) — containing strings and integers — and
returns all an array of cells (o).

MATLAB Function varargintest

function o = varargintest(s1, i2, varargin)

o{1} = s1;
o{2} = i2;
idx = 3;
for i=1:length(varargin)

o{idx} = varargin{i};
idx = idx+1;

end

The C# interface VararginTest implements the MATLAB function
varargintest.

C# Interface VararginTest

public interface VararginTest
{

object[] varargintest(string s, int i, params object[] objArg);
}

Since you are sending output to cell arrays in MATLAB, you define a
compatible C# array type of object[] in your interface. objArg defines
number of inputs passed — in this case, two.

5-61

http://msdn.microsoft.com/en-us/library/w5zay9db(v=vs.71).aspx

5 Client Programming

The C# method TryVarargin implements VararginTest, sending two strings
and two integers to the deployed MATLAB function, to be returned as a
cell array.

C# Method TryVarargin

public static void TryVarargin()

{

MWClient client = new MWHttpClient();

VararginTest mpsexample =

client.CreateProxy<VararginTest>(new Uri("http://localhost:9910/mpsexample"));

object[] vOut = mpsexample.varargintest("test", 20, false, new int[]{1,2,3});

Console.ReadLine();

}

The following table lists “.NET Client Coding Best Practices” on page 5-43
and how the C# interface method signature conforms to these practices.

This Best Practice.... Is Illustrated By....

The method name exposed by the interface
must match the name of the MATLAB function
being deployed. The method and function must
have the same number of inputs and outputs.

Both the MATLAB function signature and the
C# interface method signature use the name
varargintest. Both MATLAB and C# code are
processing two variable-length inputs, string
and integer..The method input and output types must be

convertible to and from MATLAB.
MATLAB .NET interface supports direct
conversion between MATLAB cell arrays and
C# object arrays. See “Conversion Between
MATLAB Types and C# Types” on page A-6 for
more information.

Using varargout with .NET Client
MATLAB variable output arguments (varargout) are obtained
by passing an instance of System.Object[] array. The array
is passed with the attribute [varargout], defined in the
Mathworks.MATLAB.ProductionServer.Client.dll assembly.

Before passing the System.Object[] instance, initialize the System.Object
array instance with the maximum length of the variable in your calling
method. The array is limited to one dimensions.

5-62

.NET Client

For example, consider the MATLAB function varargouttest, which takes
one variable-length input (varargin), and returns one variable-length output
(varargout), as well as two non-variable-length outputs (out1 and out2).

MATLAB Function varargouttest

functionout [out1 out2 varargout] = varargouttest(in1, in2, varargin)

out1 = modifyinput(in1);
out2 =modifyinput(in2);

for i=1:length(varargin)
varargout{i} = modifyinput(varargin{i});

end

function out = modifyinput(in)
if (isnumeric(in))

out = in*2;
elseif (ischar(in))

out = upper(in);
elseif (islogical(in))

out = ~in;
else

out = in;
end

Implement MATLAB function varargouttest with the C# interface
VarargoutTest.

In the interface method varargouttest, you define multiple
non-variable-length outputs (o1 and o2, using the out keyword, described in
“Code Multiple Outputs for C# .NET Client” on page 5-57), a double input
(in1) and a string input (in2).

You pass the variable-length output (o3) using a single-dimensional array
(object[] with attribute [varargout]), an instance of System.Object[].

As with “Using varargin with .NET Client” on page 5-61, you use the params
keyword to pass the variable-length input.

5-63

http://msdn.microsoft.com/en-us/library/w5zay9db(v=vs.71).aspx

5 Client Programming

C# Interface VarargoutTest

public interface VarargOutTest

{

void varargouttest(out double o1, out string o2, double in1, string in2

[varargout] object[] o3, params object[] varargIn);

}

In the calling method TryVarargout, note that both the type and length of the
variable output (varargOut) are being passed ((short)12).

C# Method TryVarargout

Note Ensure that you initialize varargOut to the appropriate length before
passing it as input to the method varargouttest.

public static void TryVarargout()

{

MWClient client = new MWHttpClient();

VarargOutTest mpsexample =

client.CreateProxy<VarargOutTest>(new Uri("http://localhost:9910/mpsexample"));

object[] varargOut = new object[3]; // get all 3 outputs

double o1;

string o2;

mpsexample.varargouttest(out o1, out o2, 1.2, "hello",

varargOut, true, (short)12, "test");

varargOut = new object[2]; // only get 2 outputs

double o11;

string o22;

mpsexample.varargouttest(out o11, out o22, 1.2, "hello",

varargOut, true, (short)12, "test");

}

The following table lists “.NET Client Coding Best Practices” on page 5-43
and how the C# interface method signature conforms to these practices.

5-64

.NET Client

This Best Practice.... Is Illustrated By....

The method name exposed by the interface
must match the name of the MATLAB function
being deployed. The method and function must
have the same number of inputs and outputs.

Both the MATLAB function signature and
the C# interface method signature use the
name varargouttest. Both MATLAB and C#
code are processing a variable-length input,
a variable-length output, and two multiple
non-variable-length outputs.

The method input and output types must be
convertible to and from MATLAB.

MATLAB .NET interface supports direct
conversion of MATLAB strings and integers.
See “Conversion Between MATLAB Types and
C# Types” on page A-6 for more information.

Marshal MATLAB Structures (structs) in C#
Structures (or structs) are MATLAB arrays with elements accessed by textual
field designators.

Structs consist of data containers, called fields. Each field stores an array of
some MATLAB data type. Every field has a unique name.

Creating a MATLAB Structure
MATLAB structures are ordered lists of name-value pairs. You represent
them in C# by defining a .NET struct or class, as long as it has public fields
or properties corresponding to the MATLAB structure. A field or property in a
.NET struct or class can have a value convertible to and from any MATLAB
data type, including a cell array or another structure. The examples in this
article use both .NET structs and classes.

In MATLAB, a student structure containing name, score, and grade, is
created as follows:

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

This code creates a scalar structure (S) with three fields:

S =
name: 'Ed Plum'
score: 83

5-65

5 Client Programming

grade: 'B+'

A multidimensional structure array can be created by inserting additional
elements. A structure array of dimensions (1,3) is created. For example:

S(2).name = 'Tony Miller';
S(2).score = 91;
S(2).grade = 'A-';

S(3).name = 'Mark Jones';
S(3).score = 85;
S(3).grade = 'A-';

Using .NET Structs and Classes
MATLAB function sortstudents takes in an array of student structures
and sorts the input array in ascending order by score of each student. Each
element in the struct array represents different information about a student.

You create .NET structs and classes to marshal data to and from MATLAB
structures:

• The .NET struct Student is an example of a .NET struct that
is marshaling .NET types as inputs to MATLAB function, such as
sortstudents, using public fields and properties. Note the publicly
declared field name, and the properties grade and score.

.NET Struct Student

public struct Student
{

public string name;
private string gr;
private int sc;

public string grade
{

get { return gr; }
set { gr = value; }

}

5-66

.NET Client

public int score
{

get { return sc; }
set { sc = value; }

}

public override string ToString()
{

return name + " : " + grade + " : " + score;
}

}

Note Note that this example uses the ToString for convenience. It is
not required for marshaling.

• The C# class SimpleStruct uses public readable properties as input to
MATLAB, and uses a public constructor when marshaling as output
from MATLAB.

When this class is passed as input to a MATLAB function, it results in
a MATLAB struct with fields Field1 and Field2, which are defined as
public readable properties. When a MATLAB struct with field names
Field1 and Field2 is passed from MATLAB, it is used as the target .NET
type (string and double, respectively) because it has a constructor with
input parameters Field1 and Field2.

C# Class SimpleStruct

public class SimpleStructExample
{

private string f1;
private double f2;

public SimpleStruct(string Field1, double Field2)
{

f1 = Field1;
f2 = Field2;

}

5-67

5 Client Programming

public string Field1
{

get
{

return f1;
}

}

public double Field2
{

get
{

return f2;
}

}
}

The C# interface StudentSorter and method sortstudents is provided to
show equivalent functionality in C#.

Your .NET structs and classes must adhere to specific requirements, based
on both the level of scoping (fields and properties as opposed to constructor,
for example) and whether you are marshaling .NET types to or from a
MATLAB structure. See “.NET Type Conversion Requirements To and From
a MATLAB Structure” on page 5-70 for details.

MATLAB Function sortstudents

function sorted = sortstudents(unsorted)

% Receive a vector of students as input

% Get scores of all the students

scores = {unsorted.score};

% Convert the cell array containing scores into a numeric array or doubles

scores = cell2mat(scores);

% Sort the scores array

[s i] = sort(scores);

% Sort the students array based on the sorted scores array

sorted = unsorted(i);

5-68

.NET Client

Note Even though this example only uses the scores field of the input
structure, you can also work with name and grade fields in a similar manner.

C# Interface StudentSorter

public interface StudentSorter {
Student[] sortstudents(Student[] students);

}

C# sortstudents Method

public static void sortstudents()

{

MWClient client = new MWHttpClient();

StudentSorter mpsexample =

client.CreateProxy<StudentSorter>(new Uri("http://localhost:9910/mpsexample"));

Student s1 = new Student();

s1.name = "Tony Miller";

s1.score = 91;

s1.grade = "A-";

Student s2 = new Student();

s2.name = "Ed Plum";

s2.score = 83;

s2.grade = "B+";

Student s3 = new Student();

s3.name = "Mark Jones";

s3.score = 85;

s3.grade = "A-";

Student[] unsorted = new Student[] { s1, s2, s3 };

Console.WriteLine("Unsorted list of students :");

foreach (Student st in unsorted)

{

Console.WriteLine(st);

5-69

5 Client Programming

}

Console.WriteLine();

Console.WriteLine("Sorted list of students :");

Student[] sorted = mpsexample.sortstudents(unsorted);

foreach(Student st in sorted)

{

Console.WriteLine(st);

}

Console.ReadLine();

}

.NET Type Conversion Requirements To and From a MATLAB Structure.

Input To and Output From MATLAB Structures Using Fields and
Properties

Before you can successfully marshal .NET types to and from MATLAB
structures, as inputs and outputs, ensure your .NET struct or class meets
the following requirements.

Output from MATLAB Structures Using a Constructor

Using Attributes
In addition to using the techniques described in “Using .NET Structs and
Classes” on page 5-66, attributes also provide versatile ways to marshal .NET
types to and from MATLAB structures.

The MATLAB Production Server-defined attribute MWStructureList can be
scoped at field, property, method, or interface level..

In the following example, a MATLAB function takes a cell array (vector) as
input containing various MATLAB struct data types and returns a cell
array (vector) as output containing modified versions of the input structs.

5-70

.NET Client

MATLAB Function outcell

function outCell = modifyinput(inCell)

Define the cell array using two .NET struct types:

.NET struct Types Struct1 and Struct2

public struct Struct1{
...
...

}
public struct Struct2{

...

...
}

Without using the MWStructureList attribute, the C# method signature in
the interface StructExample, is as follows:

public interface StructExample
{

public object[] modifyinput(object[] cellArrayWithStructs);
}

Note that this signature, as written, provides no information about the
structure types that cellArrayWithStructs include at run-time. By using
the MWStructureList attribute, however, you define those types directly in
the method signature:

public interface StructExample
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] modifyinput(object[] cellArrayWithStructs);

}

The MWStructureList attribute can be scoped at:

• “Method Attributes” on page 5-72

• “Interface Attributes” on page 5-72

5-71

5 Client Programming

• “Fields and Property Attributes” on page 5-72

i

Method Attributes. In this example, the attribute MWStructureList is used
as a method attribute for marshaling both the input and output types.

public interface StructExample
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] modifyinput(object[] cellArrayWithStructs);

}

In this example, struct types Struct1 and Struct2 are not exposed to method
modifyinputNew because modifyinputNew is a separate method signature

public interface StructExample
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] modifyinput(object[] cellArrayWithStructs);
public object[] modifyinputNew(object[] cellArrayWithStructs);

}

Interface Attributes. When used at an interface level, an attribute is shared
by all the methods of the interface.

In the following example, both modifyinput and modifyinputNew methods
share the interface attribute MWStructureList because the attribute is
defined prior to the interface declaration.

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public interface StructExample
{

public object[] modifyinput(object[] cellArrayWithStructs);
public object[] modifyinputNew(object[] cellArrayWithStructs);

}

Fields and Property Attributes. Write the interface using public fields
or public properties.

5-72

.NET Client

You can represent this type of .NET struct in three ways using fields and
properties:

• At the field:

Using public field and the MWStructureList attribute:

public struct StructWithinStruct
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] cellArrayWithStructs;

}

• At the property, for both get and set methods:

Using public properties and the MWStructureList attribute:

public struct StructWithinStruct
{

private object[] arr;

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] cellArrayWithStructs
{

get
{

return arr;
}

set
{

arr = value;
}

}
}

• At the property, for both or either get or set methods, depending on whether
this struct will be used as an input to MATLAB or an output from MATLAB:

public struct StructWithinStruct
{

private object[] arr;

5-73

5 Client Programming

public object[] cellArrayWithStructs
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
get
{

return arr;
}

[MWStructureList(typeof(Struct1), typeof(Struct2))]
set
{

arr = value;
}

}
}

Note The last two examples, which show attributes used at the property,
produce the same result.

Data Conversion with C# and MATLAB Types
When the .NET client invokes a MATLAB function through a request
and receives a result in the response, data conversion takes place between
MATLAB types and C# types.

Working with MATLAB Data Types
There are many data types, or classes, that you can work with in MATLAB.
Each of these classes is in the form of a matrix or array. You can build
matrices and arrays of floating-point and integer data, characters and strings,
and logical true and false states. Structures and cell arrays provide a way to
store dissimilar types of data in the same array.

All of the fundamental MATLAB classes are circled in the diagram
Fundamental MATLAB Data Classes on page 5-75.

5-74

.NET Client

Note Function Handles are not supported by MATLAB Production Server.

Fundamental MATLAB Data Classes

Each MATLAB data type has a specific equivalent in C#. Detailed
descriptions of these one-to-one relationships are defined in “Conversion
Between MATLAB Types and C# Types” on page A-6 in Appendix A, “Data
Conversion Rules”.

Dimension Coercion
In MATLAB, dimensionality is an attribute of the fundamental types and
does not add to the number of types as it does in .NET.

In C#, double, double[] and double[,] are three different data types. In
MATLAB, there is only a double data type and possibly a scalar instance, a
vector instance, or a multi-dimensional instance.

5-75

5 Client Programming

C# Signature Value Returned from MATLAB

double[,,] foo() ones(1,2,3)

How you define your MATLAB function and corresponding C# method
signature determines if your output data will be coerced, using padding or
truncation.

This coercion is performed automatically for you. This section describes the
rules followed for padding and truncation.

Note Multidimensional arrays of C# types are supported. Jagged arrays
are not supported.

Padding. When a C# method’s return type has a greater number of
dimensions than MATLAB’s, MATLAB’s dimensions are padded with ones
(1s) to match the required number of output dimensions in C#.

The following tables provide examples of how padding is performed for you:

How Your C# Method Return Type is Padded

MATLAB
Function

C# Method
Signature

When
Dimensions in
MATLAB are:

And
Dimensions in
C# are:

function a =
foo
a = ones(2,3);

double[,,,]
foo()

size(a) is [2,3] Array will be
returned as size
2,3,1,1

Truncation. When a C# method’s return type has fewer dimensions than
MATLAB’s, MATLAB’s dimensions are truncated to match the required
number of output dimensions in C#. This is only possible when extra
dimensions for MATLAB array have values of ones (1s) only.

To compute appropriate number of dimensions in C#, excess ones are
truncated, in this order:

5-76

.NET Client

1 From the end of the array

2 From the array’s beginning

3 From the middle of the array (scanning front-to-back).

The following tables provide examples of how truncation is performed for you:

How MATLAB Truncates Your C# Method Return Type

MATLAB Function C# Method
Signature

When Dimensions
in MATLAB are:

And Dimensions in
C# are:

function a = foo
a =
ones(1,2,1,1,3,1);

double[,] foo() size(a) is
[1,2,1,1,3,1]

Array will be returned
as size 2,3

Following are some examples of dimension shortening using the double
numeric type:

Truncating Dimensions in MATLAB and C# Data Conversion

MATLAB Array Dimensions Declared Output C# Type Output C# Dimensions

1 x 1 double 0 (scalar)

2 x 1 double[] 2

1 x 2 double[] 2

2 x 3 x 1 double[,] 2 x 3

1 x 3 x 4 double[,] 3 x 4

1 x 3 x 4 x 1 x 1 double[,,] 1 x 3 x 4

1 x 3 x 1 x 1 x 2 x 1 x 4
x 1

double[,,,] 3 x 2 x 1 x 4

5-77

5 Client Programming

Empty (Zero) Dimensions

Passing C# Empties to MATLAB
When a null is passed from C# to MATLAB, it will always be marshaled
into [] in MATLAB as a zero by zero (0 x 0) double. This is independent of
the declared input type used in C#. For example, all the following methods
can accept null as an input value:

void foo(String input);
void foo(double[] input);
void foo(double[,] input);

And in MATLAB, null will be received as:

[] i.e. 0x0 double

Passing MATLAB Empties to C#

An empty array in MATLAB has at least one zero (0) assigned in at least one
dimension. For function a = foo, for example, any one of the following
values is acceptable:

a = [];
a = ones(0);
a = ones(0,0);
a = ones(1,2,0,3);

Empty MATLAB data is returned to C# as null for all the above cases.

For example, in C#, the following signatures return null when a MATLAB
function returns an empty array:

double[] foo();
double[,] foo();

5-78

6

Commands — Alphabetical
List

mps-license-reset

Purpose Forces server to immediately attempt license checkout

Syntax mps-license-reset [-C path/]server_name

Description mps-license-reset [-C path/]server_name triggers the server to
checkout a license immediately, regardless of the current license status.
License keys that are currently checked out are checked in first.

Tips • Run this command at your operating system prompt.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted,
the current working folder and its parents are searched to find
the server instance.

server_name

Server checking out license

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained
in the folder created by mps-new, defined by path/, comprise one
configuration of the MATLAB Production Server product.

Examples Create a new server instance and display the status of each folder in
the file hierarchy, as the server instance is created:

mps-license-reset -C /tmp/server_2

See Also mps-status

Related
Examples

• “Forcing a License Checkout Using mps-license-reset” on page 4-9

6-2

mps-license-reset

Concepts • “License Management for MATLAB® Production Server™” on page
4-8

6-3

mps-new

Purpose Create server instance

Syntax mps-new [path/]server_name [-v]

Description mps-new [path/]server_name [-v] makes a new folder at path and
populates it with the default folder hierarchy for a “Server Instance”
on page 6-4.

Each server instance can be configured, started, monitored, and stopped
independently.

Tips • Before creating a server instance, ensure that no file or folder with
the specified path currently exists on your system.

• After issuing mps-new, you must issue mps-start to start the server
instance.

• Run this command at your operating system prompt.

Input
Arguments

path/

Path to server instance.

server_name

Name of the server to be created.

If you are creating a server instance in the current working folder,
you do not need to specify a full path. Only specify the server
name.

-v

Displays status of each folder in the file hierarchy, created to form
a server instance

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained
in the folder created by mps-new, defined by path/, comprise one
configuration of the MATLAB Production Server product.

6-4

mps-new

Examples Create a new server instance and display the status of each folder in
the file hierarchy, as the server instance is created:

mps-new /tmp/server_1 -v

Example Output

server_1/.mps-version...ok
server_1/config/...ok
server_1/config/main_config...ok
server_1/endpoint/...ok
server_1/auto_deploy/...ok
server_1/.mps-socket/...ok
server_1/log/...ok
server_1/pid/...ok

See Also mps-start | mps-status

Related
Examples

• “Create a Server” on page 4-11

Concepts • “Server Creation” on page 4-10
• “Server Overview” on page 4-2

6-5

mps-restart

Purpose Stop and start server instance

Syntax mps-restart [-C path/]server_name [-f]

Description mps-restart [-C path/]server_name [-f] stops a server instance,
then restarts the same server instance. Issuing mps-restart is
equivalent to issuing the mps-stop and mps-start commands in
succession.

Tips • After issuing mps-restart, issue the mps-status command to verify
the server instance has started.

• If you are restarting a server instance in the current working folder,
you do not need to specify a full path. Only specify the server name.

• Run this command at your operating system prompt.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted, the
current working folder and its parents are searched to find the
server instance. If you are restarting a server instance in the
current working folder, you do not need to specify a full path.
Only specify the server name.

server_name

Name of the server to be restarted.

-f

Force success even if the server instance is stopped. Restarting a
stopped instance returns an error.

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained in
the folder created by mps-new comprise a single configuration of the
MATLAB Production Server product.

6-6

mps-restart

Examples Restart a server instance named server_1, located in folder tmp. Force
successful completion of mps-restart.

mps-restart -f -C /tmp/server_1

See Also mps-start | mps-stop | mps-status

6-7

mps-start

Purpose Starts server instance

Syntax mps-start [-C path/]server_name [-f]

Description mps-start [-C path/]server_name [-f] starts a server instance

Tips • After issuing mps-start, issue the mps-status command to verify
the server instance has STARTED.

• If you are starting a server instance in the current working folder,
you do not need to specify a full path. Only specify the server name.

• Run this command at your operating system prompt.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted,
the current working folder and its parents are searched to find
the server instance.

server_name

Name of the server to be started.

-f

Force success even if the server instance is currently running.
Starting a running server instance is considered an error.

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained in
the folder created by mps-new comprise a single configuration of the
MATLAB Production Server product.

Examples Start a server instance named server_1, located in folder tmp. Force
successful completion of mps-start.

mps-start -f -C /tmp/server_1

6-8

mps-start

See Also mps-stop | mps-restart | mps-status

Related
Examples

• “Start a Server” on page 4-19

Concepts • “Server Startup” on page 4-18
• “Server Overview” on page 4-2

6-9

mps-status

Purpose Displays status of server instance

Syntax mps-status [-C path/]server_name

Description mps-status [-C path/]server_name displays the status of the server
(STARTED, STOPPED), along with a full path to the server instance.

Tips • If you are creating a server instance in the current working folder,
you do not need to specify a full path. Only specify the server name.

• If the server is running, the status of the license associated with
that server will also be displayed.

• Run this command at your operating system prompt.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted,
the current working folder and its parents are searched to find
the server instance.

server_name

Server to be queried for status

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained
in the folder created by mps-new, defined by path/, comprise one
configuration of the MATLAB Production Server product.

Examples Display status of server instance server_1, residing in tmp folder.

mps-status -C /tmp/server_1

Example Output

If server is running and running with a valid license:

'/tmp/server_1' STARTED

6-10

mps-status

license checked out

If server is not running:

'/tmp/server_1' STOPPED

See Also mps-start | mps-stop | mps-restart | mps-which

Related
Examples

• “Start a Server” on page 4-19

Concepts • “Server Startup” on page 4-18
• “Server Overview” on page 4-2

6-11

mps-stop

Purpose Stop server instance

Syntax mps-stop [-C path/]server_name [-f] [-v]
[--timeout hh:mm:ss]

Description mps-stop [-C path/]server_name [-f] [-v] [--timeout
hh:mm:ss] closes HTTP server socket and all open client connections
immediately. All function requests that were executing when the
command was issued are allowed to complete before the server shuts
down.

Tips • After issuing mps-stop, issue the mps-status command to verify
the server instance has STOPPED.

• If you are stopping a server instance in the current working folder,
you do not need to specify a full path. Only specify the server name.

• Run this command at your operating system prompt.

• Note that the timeout option (--timeout hh:mm:ss) is specified with
two (2) dashes, not one dash.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted,
the current working folder and its parents are searched to find
the server instance.

server_name

Name of the server to be stopped.

-f

Force success even if the server instance is not currently stopped.
Stopping a stopped instance is considered an error.

-v

Displays system messages relating to termination of server
instance.

6-12

mps-stop

--timeout hh:mm:ss

Set a limit on how long mps-stop will run before returning either
success or failure. For example, specifying --timeout 00:02:00
indicates that mps-stop should exit with an error status if the
server takes longer than two (2) minutes to shut down. The
instance continues to attempt to terminate even if mps-stop times
out. If this option is not specified, the default behavior is to wait
as long as necessary (infinity) for the instance to stop.

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained
in the folder created by mps-new, defined by path/, comprise one
configuration of the MATLAB Production Server product.

Examples Stop server instance server_1, located in tmp folder. Force successful
completion of mps-stop. Timeout with an error status if mps-stop takes
longer than three (3) minutes to complete.

In this example, the verbose (-v) option is specified, which produces
an output status message.

mps-stop -f -v -C /tmp/server_1 --timeout 00:03:00

Example Output

waiting for stop... (timeout = 00:03:00)

See Also mps-start | mps-restart | mps-new | mps-status

6-13

mps-which

Purpose Display path to server instance that is currently using the configured
port.

Syntax mps-which [-C path/]server_name

Description mps-which [-C path/]server_name is useful when running multiple
server instances on the same machine. If you accidently leaves a server
instance running and try to start another which is configured to use
the same port number, the latter server instance will fail to start,
displaying an address-in-use error. mps-which can be used to identify
which server instance is using the port.

Tips • If you are creating a server instance in the current working folder,
you do not need to specify a full path. Only specify the server name.

• Run this command at your operating system prompt.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted,
the current working folder and its parents are searched to find
the server instance.

server_name

Server to be queried for path.

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained
in the folder created by mps-new, defined by path/, comprise one
configuration of the MATLAB Production Server product.

Examples server_1 and server_2, both residing in folder tmp, are configured to
use to same port, defined by --http in the main_config configuration
files. However, the port can only be allocated to one server.

Run mps-which for both servers:

6-14

mps-which

mps-which -C /tmp/server_1

mps-which -C /tmp/server_2

Example Output

In both cases, the server that has allocated the configured port displays
(server_1):

/tmp/server_1

See Also mps-status

6-15

mps-which

6-16

A

Data Conversion Rules

• “Conversion of Java Types to MATLAB Types ” on page A-2

• “Conversion of MATLAB Types to Java Types ” on page A-4

• “Conversion Between MATLAB Types and C# Types” on page A-6

A Data Conversion Rules

Conversion of Java Types to MATLAB Types

Value Passed to Java
Method is:

Input type Received by
MATLAB is:

Dimension of Data in
MATLAB is:

java.lang.Byte,
byte

{1,1}

byte[] data

int8

{1, data.length}

java.lang.Short
short

{1,1}

short[] data

int16

{1, data.length}

java.lang.Integer,
int

{1,1}

int[] data

int32

{1, data.length}

java.lang.Long,
long

{1,1}

long[] data

int64

{1, data.length}

java.lang.Float,
float

{1,1}

float[] data

single

{1, data.length}

java.lang.Double,
double

{1,1}

double[] data

double

{1, data.length}

java.lang.Boolean,
boolean

{1,1}

boolean[] data

logical

{1, data.length}

java.lang.Character,
char

{1,1}

char[] data {1, data.length}

java.lang.String data

char

{1, data.length()}

A-2

Conversion of Java Types to MATLAB Types

Value Passed to Java
Method is:

Input type Received by
MATLAB is:

Dimension of Data in
MATLAB is:

java.lang.String[] data {1, data.length}

java.lang.Object[] data

cell

{1, data.length}

{ data.length,
dimensions(T[0]) }, if T is
an array

T[] data 1 MATLAB type for T 1

{ 1, data.length}, if T is not
an array

1 Where T represents any supported MATLAB type. If T is an array type, then
all elements of data must have exactly the same length

1.

A-3

A Data Conversion Rules

Conversion of MATLAB Types to Java Types

When MATLAB Returns: Dimension of Data in
MATLAB is:

MATLAB Data Converts To
Java Type:

{1,1} byte,
java.lang.Byte

{1,n} , {n,1} byte[n], java.lang.Byte[n]

int8,
uint8

{m,n,p,...} byte[m][n][p]... ,
java.lang.Byte[m][n][p]...

{1,1} short, java.lang.Short

{1,n} , {n,1} short[n], java.lang.Short[n]

int16,
uint16

{m,n,p,...} short[m][n][p]... ,
java.lang.Short[m][n][p]...

{1,1} int, java.lang.Integer

{1,n} , {n,1} int[n],
java.lang.Integer[n]

int32,
uint32

{m,n,p,...} int[m][n][p]... ,
java.lang.Integer[m][n][p]...

{1,1} long, java.lang.Long

{1,n} , {n,1} long[n],
java.lang.Long[n]

int64,
uint64

{m,n,p,...} long[m][n][p]... ,
java.lang.Long[m][n][p]...

{1,1} float, java.lang.Float

{1,n} , {n,1} float[n],
java.lang.Float[n]

single

{m,n,p,...} float[m][n][p]... ,
java.lang.Float[m][n][p]...

A-4

Conversion of MATLAB Types to Java Types

When MATLAB Returns: Dimension of Data in
MATLAB is:

MATLAB Data Converts To
Java Type:

{1,1} double, java.lang.Double

{1,n} , {n,1} double[n],
java.lang.Double[n]

double

{m,n,p,...} double[m][n][p]... ,
java.lang.Double[m][n][p]...

{1,1} boolean, java.lang.Boolean

{1,n} , {n,1} boolean[n],
java.lang.Boolean[n]

logical

{m,n,p,...} boolean[m][n][p]... ,
java.lang.Boolean[m][n][p]...

{1,1} char, java.lang.Character

{1,n} , {n,1} java.lang.String

char

{m,n,p,...} char[m][n][p]... ,
java.lang.Character[m][n][p]...

{1,1} java.lang.String

{1,n} , {n,1} java.lang.String[n]

cell
(containing only strings)

{m,n,p,...} java.lang.String[m][n][p]...

{1,1} java.lang.Object

{1,n} , {n,1} java.lang.Object[n]

cell
(containing multiple types)

{m,n,p,...} java.lang.Object[m][n][p]...

A-5

A Data Conversion Rules

Conversion Between MATLAB Types and C# Types

This MATLAB type.... Is equivalent to this C# type....

uint8 byte

int8 sbyte

uint16 ushort

int16 short

uint32 uint

int32 int

uint64 ulong

int64 long

single float

double double

logical bool

char System.String, char

cell (strings only) Array of System.String

cell (heterogeneous data types) Array of System.Object

struct A .NET struct or class with public
fields or public properties

Note Multidimensional arrays of above C# types are supported. Jagged
arrays are not supported.

A-6

B

MATLAB Production Server
.NET Client API Classes
and Methods

• “MATLABException” on page B-2

• “MATLABStackFrame” on page B-5

• “MWClient” on page B-8

• “MWHttpClient” on page B-10

• “MWStructureListAttribute” on page B-13

B MATLAB® Production Server™ .NET Client API Classes and Methods

MATLABException

About MATLABException
Use MATLABException to handle MATLAB exceptions thrown by .NET
interfaces

Errors are thrown during invocation of MATLAB function associated with a
MATLAB Production Server request initiated by MWHttpClient.

MATLAB makes the following information available in case of an error:

• MATLAB stack trace

• Error ID

• Error message

Derived from Exception

Members

Constructor

public MATLABException(
string, message
string, identifier
IList<MATLABStackFrame> stackList

);

Creates an instance of MATLABException using MATLAB error message,
error identifier, and a list of MATLABStackFrame, representing MATLAB stack
trace associated with a MATLAB error.

B-2

MATLABException

Constructor Parameters

string, message
Error message from MATLAB

string, identifier

Error identifier used in MATLAB

IList<MATLABStackFrame> stackList

List of MATLABStackFrame representing MATLAB stack trace. An
unmodifiable copy of this list is made

Public Instance Properties

MATLABStackTrace
Returns list of MATLABStackFrame

Gets MATLAB stack with 0 or more MATLABStackFrame.

Each stack frame provides information about MATLAB file, function name,
and line number. The output list of MATLABStackFrame is unmodifiable.

Message

Returns detailed MATLAB message corresponding to an error

MATLABIdentifier

Returns identifier used when error was thrown in MATLAB

MATLABStackTraceString

Returns string from stack trace

Public Instance Methods
None

B-3

B MATLAB® Production Server™ .NET Client API Classes and Methods

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MATLABStackFrame

B-4

MATLABStackFrame

MATLABStackFrame

About MATLABStackFrame
Use MATLABStackFrame to return an element in MATLAB stack trace obtained
using MATLABException.

MATLABStackFrame contains:

• Name of MATLAB file

• Name of MATLAB function in MATLAB file

• Line number in MATLAB file

Members

Constructor

public MATLABStackFrame(
string, file
string , name
int line

);

Construct MATLABStackFrame using file name, function name, and line
number

Constructor Parameters

string, file
Name of the file

string, name

Name of function in the file

B-5

B MATLAB® Production Server™ .NET Client API Classes and Methods

int line

Line number in MATLAB file

Public Instance Properties

File
Returns complete path to MATLAB file

Name

Returns name of a MATLAB function in a MATLAB file

For a MATLAB file with only one function, Name is equivalent to the MATLAB
file name, without the extension. The name will be different from the
MATLAB file name if it is a sub function in a MATLAB file.

Line

Returns a line number in a MATLAB file

Public Instance Methods

ToString

public override string ToString()

Returns a string representation of an instance of MATLABStackFrame

Equals

public override bool Equals(object obj)

Returns true if two MATLABStackFrame instances have the same file name,
function name, and line number

GetHashCode

public override int GetHashCode()

B-6

MATLABStackFrame

Returns hash value for an instance of MATLABStackFrame

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MATLABException

B-7

B MATLAB® Production Server™ .NET Client API Classes and Methods

MWClient

About MWClient
Interface of MWHttpClient, providing client-server communication for
MATLAB Production Server.

Members

Public Instance Methods

CreateProxy

T CreateProxy<T>(Uri url);

Returns a proxy object that implements interface T.

Creates a proxy object reference to the generic CTF archive hosted by the
server. The CTF archive is identified by a URL.

The methods in returned proxy object match the names of MATLAB functions
in the CTF archive that the user wants to deploy, as well as inputs and
outputs consistent with MATLAB function types and values.

When these methods are invoked, the proxy object:

1 Establishes a client-server connection

2 Sends MATLAB function inputs to the server

3 Receives the results

Parameter List

• T — Type of the returned object

• url — URL to the CTF archive, with the form of
http://localhost:port_number/CTF_archive_name_without_extension

B-8

MWClient

Close

void Close();

Closes connection with the server.

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MWHttpClient

B-9

B MATLAB® Production Server™ .NET Client API Classes and Methods

MWHttpClient

About MWHttpClient
Implements MWClient interface.

Establishes HTTP-based connection between MATLAB Production Server
client and server. The client and server can be hosted on the same machine,
or different machines with different platforms.

MWHttpClient allows the client to invoke MATLAB functions exported by a
generic CTF archive hosted by the server. The CTF archive is made available
to the client as a URL.

A server can host multiple CTF archives since each CTF has a unique URL.

In order to establish client-server communication, the following is required:

• URL to the CTF archive in the form:
http://localhost:port_number/CTF_archive_name_without_extension

• Names of MATLAB functions exported by the CTF archive

• Information about the number of inputs and outputs for each MATLAB
function and their types

• A user-written interface including:

- Public methods with same names matching those of the MATLAB
functions exported by the CTF. Methods must be consistent with
MATLAB functions in terms of the numbers of inputs and outputs and
their types

- Each method in this interface should declare the exceptions:

• Mathworks.MPS.Client.MATLABException— Represents MATLAB
errors

• System.Net.WebException— Represents any transport errors during
client-server communication

- There can be overloads of a method in the interface, depending on the
MATLAB function that the method is representing

B-10

MWHttpClient

- Interface name does not have to match the CTF archive name

Members

Constructor

public class MWHttpClient : MWClient

Creates an instance of MWHttpClient

Public Instance Methods

CreateProxy

T CreateProxy<T>(Uri url);

Returns a proxy object that implements interface T.

Creates a proxy object reference to the generic CTF archive hosted by the
server. The CTF archive is identified by a URL.

The methods in returned proxy object match the names of MATLAB functions
in the CTF archive that the user wants to deploy, as well as inputs and
outputs consistent with MATLAB function types and values.

When these methods are invoked, the proxy object:

1 Establishes a client-server connection

2 Sends MATLAB function inputs to the server

3 Receives the results

Parameter List

• T — Type of the returned object

• url — URL to the CTF archive, with the form of
http://localhost:port_number/CTF_archive_name_without_extension

B-11

B MATLAB® Production Server™ .NET Client API Classes and Methods

Close

void Close();

Closes connection with the server.

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MWClient

B-12

MWStructureListAttribute

MWStructureListAttribute

About MWStructureListAttribute
MWStructureListAttribute provides .NET types, which are convertible to
and from MATLAB structures.

MWStructureList is used when a variable of declared type System.Object
(scalar or multi-dimensional) either refers to or contains another
MATLAB-struct-convertible type (a user-defined .NET struct or class) at
run time.

MWStructureListAttribute allows you to scope data conversion at field,
property, method, or interface level.

Members

Constructor

public MWStructureListAttribute(
params Type[] structTypes

);

Construct MWStructureListAttribute using an array of user-defined types
(structTypes).

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

B-13

B MATLAB® Production Server™ .NET Client API Classes and Methods

B-14

Index

IndexSymbols and Numerics
32-bit and 64-bit Compatibility

Considerations 4-7

B
Bond Pricing Tool Example 5-9

C
Command Line Wizard 4-6
Configuration file

Editing 4-15

D
Deployable CTF Archives

Building from MATLAB code 3-6
Contents of src and distrib folders 3-10
Creating from MATLAB code 3-6
Definition of 3-8
Prerequisites for creating 3-6
Sharing with clients 3-11

I
Installation 4-5
Installation Wizard

Running 4-5

J
Java Client

Coding Best Practices 5-4
Concurrent processing implementation 5-48
Configuring client timeout value for 5-7
Data Conversion with Java and MATLAB

types 5-36
Freeing system resources 5-7
Handling exceptions 5-6
Javadoc

Location of 5-9
Locally scoped instance of 5-5
Managing client lifecycle of 5-5
Managing system resources 5-7
Marshaling MATLAB struct types 5-29
Marshaling MATLAB Structs 5-29
Marshaling MATLAB Structures 5-29
Monte Carlo Simulation example 5-15
Multiple outputs 5-24
Parallel processing implementation 5-15
Prerequisites 5-4
Server implementation of 5-6
Variable-length inputs and outputs 5-27

Java types
Conversion to MATLAB types A-2

L
License Center

Obtaining licenses through 4-8
License Checkout

Forcing with mps-license-reset server
command 4-9

License Server
Grace period 4-22
Status messages

Meaning of 4-22
Timeout 4-22
Verifying status of 4-9

License Server Options 4-8

M
main_config

Critical options 4-15
Editing 4-15

MATLAB Compiler Runtime (MCR)
Compatibility with version of MATLAB 4-6
Configuration file

About 4-15

Index-1

Index

Downloading 4-5
Downloading of 4-13
Installation of 4-13
Installing 4-5
main_config

About 4-15
Specifying installed MCR to server

instance 4-15
Version considerations 4-6

MATLAB Data Types
Unsupported types for client and server

marshaling 3-5 5-3
MATLAB Production Server

Basic example with GUI front-end 5-9
Client Overview 5-2
Creating the Java client

Basic example 2-10
Getting Started tutorial 2-1
Installing 32-Bit version on 64-Bit

systems 4-8
Java Client 5-4
Product Overview 1-3
Server Overview (Server Component) 4-2
User roles and associated tasks 1-3

MATLAB types
Conversion to Java types A-4

MATLAB Types
Conversion to C# types A-6

MATLABException B-2
MATLABStackFrame B-5
mps-license-reset 6-2
mps-new 6-4
mps-restart 6-6
mps-setup 4-6

Running in a silent installation 4-7
Running in non-interactive mode 4-7

mps-setup Command Line Wizard 4-6
Running in a silent installation 4-7
Running in non-interactive mode 4-7
setting --mcr-root 4-6

setting location of MCR 4-6
mps-start 4-18 6-8
mps-status 4-21 6-10

Using to verify license server status 4-9
mps-stop 6-12
mps-which 6-14
MWClient B-8
MWHttpClient B-10
MWStructureListAttribute B-13

N
.NET Client

Best Coding Practices 5-43
Configuring client timeout value for 5-46
Data conversion with .NET/C# and MATLAB

types 5-74
Freeing system resources 5-44
Handling exceptions 5-44
Managing system resources 5-44
Marshaling MATLAB struct types 5-65
Marshaling MATLAB Structs 5-65
Marshaling MATLAB Structures 5-65
Monte Carlo Simulation example 5-48
Multiple outputs 5-57
Ndoc

Location of 5-47
Preparing your Microsoft Visual Studio

environment 5-47
Prerequisites 5-43
Variable inputs and outputs 5-61

S
Server

Basics of server processing 4-2
Best Practices for log management 4-27
Common Error Messages and

Resolutions 4-28
Creation a new instance of 4-11

Index-2

Index

Creation of 4-11
Customizing configuration file 4-14
Customizing main_config 4-14
Diagnosing a problem 4-24
Diagnostic tools 4-25
Endpoint files 4-27
Log archive settings 4-26
Log files 4-25
Log retention settings 4-26
--log-archive-max-size 4-26
--log-archive-root 4-26
--log-rotation-size 4-26
main.log 4-26
--num-threads

throughput management 4-3
--num-workers

Capacity management 4-3
Number of workers

Capacity management 4-3
Prerequisites for creation 4-10
Process Identification Files (PID files) 4-27

Setting log file detail levels. 4-27
Starting up 4-19
Verifying if started 4-21
Verifying if stopped 4-21
Verifying status of 4-21
Workload management 4-2

Server Configuration File (main_config)
License Server Options 4-8
Specifying License Server Options 4-8
Verifying License Server Options 4-8

Server Startup
using mps-start command 4-18

Server Status Verification
using mps-status command 4-21

W
Windows Interactive Error Reporting

Disabling 4-7
DontShowUI 4-7

Index-3

	toc
	Introducing MATLAB Production Server
	Product Description
	Key Features

	Product Overview
	How Does This Product Work?
	Who Uses this Product?
	User Roles and Tasks

	Getting Started With MATLAB Production Server
	Deploy MATLAB Code with MATLAB Production Server
	Introduction to the Workflow
	Create a Deployable CTF Archive
	Write the MATLAB code you want to deploy
	Deploy the function
	Start a Server Instance
	Install MATLAB Production Server
	Install MATLAB Compiler Runtime (MCR)
	Create a Server Instance
	Configure the Server
	Start the Server
	Share the CTF Archive on the Server Instance
	Create a Java Application That Calls the Deployed Function
	Design a Java interface
	Instantiate the Client Class and Create the Proxy Object
	Call the Deployed function in Java code
	Java Class MPSClientExample
	Compile the Java application
	Run the Java application
	Create a .NET Application That Calls the Deployed Function
	Create a Microsoft Visual Studio Project
	Create a Reference to the Client Run-Time Library
	Design the .NET Interface in C#
	Write, Build, and Run the .NET Application
	C# Namespace Magic

	MATLAB Code Deployment
	Write MATLAB Code for Deployment
	Deployment Coding Guidelines
	State-Dependent Functions
	Does My MATLAB Function Carry State?
	Defensive Coding Practices
	Techniques for Preserving State

	Deploying MATLAB Functions Containing MEX Files
	Unsupported MATLAB Data Types for Client and Server Marshaling

	Create a Deployable CTF Archive from MATLAB Code
	Prerequisites for Deployable Archive Creation
	Build a Deployable CTF Archive
	What Is a Deployable Archive?
	Modifying Deployed Functions
	What Gets Built?
	For More Information

	Share the Deployable CTF Archive
	For More Information

	Server Management
	Server Overview
	What is a Server?
	How Does a Server Manage its Work?

	Product Installation and Licensing
	Install MATLAB Production Server
	Installation Prerequisites
	Run the Installation Wizard
	Download and Install the MATLAB Compiler Runtime (MCR)
	Run mps-setup to Set Location of MATLAB Compiler Runtime (MCR)
	Disable Windows Interactive Error Reporting (Optional)
	Ensure Deployment Architecture Compatibility

	License Management for MATLAB Production Server
	Specify or Verify License Server Options in Server Configuration
	Verify Status of License Server using mps-status
	Forcing a License Checkout Using mps-license-reset

	Server Creation
	Prerequisites
	Procedure
	Create a Server
	For More Information

	MATLAB Compiler Runtime (MCR) Installation
	Install the MATLAB Compiler Runtime (MCR)

	Configuration File Customization
	Prerequisites
	Procedure
	Specify the Installed MCR to Your Server Instance
	About the Server Configuration File (main_config)

	For More Information

	Server Startup
	Prerequisites
	Procedure
	Start a Server
	For More Information

	Server Status Verification
	Prerequisite
	Procedure
	Verify Status of a Server
	License Server Status Information

	For More Information

	Server Troubleshooting
	Procedure
	Diagnose a Server Problem
	Server Diagnostic Tools
	Log Files
	Process Identification Files (PID Files)
	Endpoint Files

	Common Error Messages and Resolutions
	(404) Not Found
	Error: Bad MCR Instance
	Error: Server Instance not Specified
	For More Information

	Client Programming
	MATLAB Production Server Client Overview
	What is a MATLAB Production Server Client?
	Create a MATLAB Production Server Client
	Unsupported MATLAB Data Types for Client and Server Marshaling

	Java Client
	Java Client Coding Best Practices
	Java Client Prerequisites
	Manage Client Lifecycle
	Locally Scoped Instance
	Servlet Implementation
	Handling Java Client Exceptions
	Managing System Resources
	Configure Client Timeout Value for Connection with a Server
	Where to Find the Javadoc

	Bond Pricing Tool with GUI for Java Client
	Objectives
	Where To Find the Example Code
	Step 1: Write MATLAB Code
	Step 2: Create a Deployable CTF Archive with the Deployment Tool
	Step 3: Share the Deployable CTF Archive on a Server
	Step 4: Create the Java Client Code
	Step 5: Build the Client Code and Run the Example

	Monte Carlo Simulation for Java Client
	Objectives
	Where To Find the Example Code
	Step 1: Write MATLAB Code
	Step 2: Create the Deployable CTF Archive that Runs the Simulati
	Step 3: Share the Deployable CTF Archive on a Server
	Step 4: Configure the Server for Concurrent Processing
	Step 5: Create the Java Client Code
	Step 6: Build the Client Code and Run the Example

	Code Multiple Outputs for Java Client
	Processing Outputs in the Monte Carlo Simulation

	Code Variable-Length Inputs and Outputs for Java Client
	Marshal MATLAB Structures (Structs) in Java
	Marshaling a Struct Between Client and Server
	Java Class Student
	Java Interface StudentSorter
	Java MPSClientExample Class
	Java Class Student with Struct as Input
	Java Class Student with Struct as Output
	Defining MATLAB structures for output using @ConstructorProperti

	Data Conversion with Java and MATLAB Types
	Working with MATLAB Data Types
	Dimensionality in Java and MATLAB Data Types
	Padding
	Truncation

	Empty (Zero) Dimensions
	Passing Java Empties to MATLAB
	Passing MATLAB Empties to Java
	Boxed Types
	Signed and Unsigned Types in Java and MATLAB Data Types

	.NET Client
	.NET Client Coding Best Practices
	.NET Client Prerequisites
	Handling Exceptions
	Managing System Resources
	Configure Client Timeout Value for Connection with a Server
	Data Conversion for .NET and MATLAB Types
	Where to Find the Ndoc

	Preparing Your Microsoft Visual Studio Environment
	Creating a Microsoft Visual Studio Project
	Creating a Reference to the Client Run-Time Library

	Monte Carlo Simulation for .NET Client
	Objectives
	Where To Find the Example Code
	Step 1: Write MATLAB Code
	Step 2: Create the Deployable CTF Archive that Runs the Simulati
	Step 3: Share the Deployable CTF Archive on a Server
	Step 4: Configure the Server for Concurrent Processing
	Step 5: Create the C# Client Code
	Step 6: Build the Client Code and Run the Example

	Code Multiple Outputs for C# .NET Client
	MATLAB Function multipleoutputs
	C# Interface MultipleOutputsExample
	C# Method TryMultipleOutputs
	Processing Multiple Outputs in the Monte Carlo Simulation

	Code Variable-Length Inputs and Outputs for .NET Client
	Using varargin with .NET Client
	MATLAB Function varargintest
	C# Interface VararginTest
	C# Method TryVarargin
	Using varargout with .NET Client
	MATLAB Function varargouttest
	C# Interface VarargoutTest
	C# Method TryVarargout

	Marshal MATLAB Structures (structs) in C#
	Creating a MATLAB Structure
	Using .NET Structs and Classes
	.NET Struct Student
	C# Class SimpleStruct
	MATLAB Function sortstudents
	C# Interface StudentSorter
	C# sortstudents Method
	Using Attributes
	MATLAB Function outcell
	.NET struct Types Struct1 and Struct2

	Data Conversion with C# and MATLAB Types
	Working with MATLAB Data Types
	Dimension Coercion
	Empty (Zero) Dimensions
	Passing C# Empties to MATLAB
	Passing MATLAB Empties to C#

	Commands — Alphabetical List
	Data Conversion Rules
	Conversion of Java Types to MATLAB Types
	Conversion of MATLAB Types to Java Types
	Conversion Between MATLAB Types and C# Types

	MATLAB Production Server .NET Client API Classes and Methods
	MATLABException
	About MATLABException
	Members
	Constructor
	Constructor Parameters
	string, message
	string, identifier
	IList<MATLABStackFrame> stackList
	Public Instance Properties
	MATLABStackTrace
	Message
	MATLABIdentifier
	MATLABStackTraceString
	Public Instance Methods

	Requirements
	Namespace
	Assembly

	See Also

	MATLABStackFrame
	About MATLABStackFrame
	Members
	Constructor
	Constructor Parameters
	string, file
	string, name
	int line
	Public Instance Properties
	File
	Name
	Line
	Public Instance Methods
	ToString
	Equals
	GetHashCode

	Requirements
	Namespace
	Assembly

	See Also

	MWClient
	About MWClient
	Members
	Public Instance Methods
	CreateProxy
	Parameter List
	Close

	Requirements
	Namespace
	Assembly

	See Also

	MWHttpClient
	About MWHttpClient
	Members
	Constructor
	Public Instance Methods
	CreateProxy
	Parameter List
	Close

	Requirements
	Namespace
	Assembly

	See Also

	MWStructureListAttribute
	About MWStructureListAttribute
	Members
	Constructor

	Requirements
	Namespace
	Assembly

	Index

	tables
	How Different Roles Work with MATLAB Production Server
	MATLAB Programmer
	Java or .NET Developer
	Server Administrator
	Java Client Exceptions
	How MATLAB Pads Your Java Method Return Type
	Padding Dimensions in MATLAB and Java Data Conversion
	How MATLAB Truncates Your Java Method Return Type
	Truncating Dimensions in MATLAB and Java Data Conversion
	How Your C# Method Return Type is Padded
	How MATLAB Truncates Your C# Method Return Type
	Truncating Dimensions in MATLAB and C# Data Conversion

